Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 1
Atmos. Meas. Tech., 11, 1–16, 2018
https://doi.org/10.5194/amt-11-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 1–16, 2018
https://doi.org/10.5194/amt-11-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 03 Jan 2018

Research article | 03 Jan 2018

Measurements of a potential interference with laser-induced fluorescence measurements of ambient OH from the ozonolysis of biogenic alkenes

Pamela Rickly and Philip S. Stevens
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Philip Stevens on behalf of the Authors (10 Oct 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (11 Oct 2017) by Hendrik Fuchs
RR by Anonymous Referee #2 (26 Oct 2017)
ED: Publish subject to minor revisions (review by editor) (08 Nov 2017) by Hendrik Fuchs
AR by Philip Stevens on behalf of the Authors (10 Nov 2017)  Author's response    Manuscript
ED: Publish as is (16 Nov 2017) by Hendrik Fuchs
Publications Copernicus
Download
Short summary
The hydroxyl radical is the primary atmospheric oxidant in the atmosphere, and measurements of its concentration provide a rigorous test of our understanding of atmospheric chemistry. This paper presents measurements of a potential interference with measurements of OH using laser-induced fluorescence techniques, which may contribute to measurements of OH in forested environments. The results may help to explain discrepancies between measurements and model predictions in these environments.
The hydroxyl radical is the primary atmospheric oxidant in the atmosphere, and measurements of...
Citation