Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 2 | Copyright
Atmos. Meas. Tech., 11, 1019-1030, 2018
https://doi.org/10.5194/amt-11-1019-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Feb 2018

Research article | 22 Feb 2018

Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005–2015

David R. Thompson et al.
Related authors
Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG
Andrew K. Thorpe, Christian Frankenberg, David R. Thompson, Riley M. Duren, Andrew D. Aubrey, Brian D. Bue, Robert O. Green, Konstantin Gerilowski, Thomas Krings, Jakob Borchardt, Eric A. Kort, Colm Sweeney, Stephen Conley, Dar A. Roberts, and Philip E. Dennison
Atmos. Meas. Tech., 10, 3833-3850, https://doi.org/10.5194/amt-10-3833-2017,https://doi.org/10.5194/amt-10-3833-2017, 2017
Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements
Sven Krautwurst, Konstantin Gerilowski, Haflidi H. Jonsson, David R. Thompson, Richard W. Kolyer, Laura T. Iraci, Andrew K. Thorpe, Markus Horstjann, Michael Eastwood, Ira Leifer, Samuel A. Vigil, Thomas Krings, Jakob Borchardt, Michael Buchwitz, Matthew M. Fladeland, John P. Burrows, and Heinrich Bovensmann
Atmos. Meas. Tech., 10, 3429-3452, https://doi.org/10.5194/amt-10-3429-2017,https://doi.org/10.5194/amt-10-3429-2017, 2017
Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane
D. R. Thompson, I. Leifer, H. Bovensmann, M. Eastwood, M. Fladeland, C. Frankenberg, K. Gerilowski, R. O. Green, S. Kratwurst, T. Krings, B. Luna, and A. K. Thorpe
Atmos. Meas. Tech., 8, 4383-4397, https://doi.org/10.5194/amt-8-4383-2015,https://doi.org/10.5194/amt-8-4383-2015, 2015
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra
Christopher R. Williams, Maximilian Maahn, Joseph C. Hardin, and Gijs de Boer
Atmos. Meas. Tech., 11, 4963-4980, https://doi.org/10.5194/amt-11-4963-2018,https://doi.org/10.5194/amt-11-4963-2018, 2018
A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627-4643, https://doi.org/10.5194/amt-11-4627-2018,https://doi.org/10.5194/amt-11-4627-2018, 2018
Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals
Daniel P. Grosvenor, Odran Sourdeval, and Robert Wood
Atmos. Meas. Tech., 11, 4273-4289, https://doi.org/10.5194/amt-11-4273-2018,https://doi.org/10.5194/amt-11-4273-2018, 2018
All-sky information content analysis for novel passive microwave instruments in the range from 23.8 to 874.4 GHz
Verena Grützun, Stefan A. Buehler, Lukas Kluft, Jana Mendrok, Manfred Brath, and Patrick Eriksson
Atmos. Meas. Tech., 11, 4217-4237, https://doi.org/10.5194/amt-11-4217-2018,https://doi.org/10.5194/amt-11-4217-2018, 2018
A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity
Alexander Vasilkov, Eun-Su Yang, Sergey Marchenko, Wenhan Qin, Lok Lamsal, Joanna Joiner, Nickolay Krotkov, David Haffner, Pawan K. Bhartia, and Robert Spurr
Atmos. Meas. Tech., 11, 4093-4107, https://doi.org/10.5194/amt-11-4093-2018,https://doi.org/10.5194/amt-11-4093-2018, 2018
Cited articles
Barker, H. W., Qu, Z., Bélair, S., Leroyer, S., Milbrandt, J. A., and Vaillancourt, P. A.: Scaling properties of observed and simulated satellite visible radiances, J. Geophys. Res.-Atmos., 122, 9413–9429, 2017.
Bender, F. A., Ramanathan, V., and Tselioudis, G.: Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift, Clim. Dynam., 38, 2037–2053, 2012.
Boardman, J. W. and Kruse, F. A.: Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach, IEEE T. Geosci. Remote, 49, 4138–4152, 2011.
Brown, L. D. and Levine, M.: Variance estimation in nonparametric regression via the difference sequence method, Ann. Stat., 35, 2219–2232, 2007.
Ceppi, P. and Hartmann, D. L.: Connections between clouds, radiation, and midlatitude dynamics: A review, Current Climate Change Reports, 1, 94–102, 2015.
Publications Copernicus
Download
Short summary
The distribution of ice and liquid particles in clouds (i.e., their thermodynamic phase) has a large impact on Earth's climate. We report a global high spatial resolution survey of cloud phase based on a decade of data from the Hyperion orbital imaging spectrometer. Seasonal and latitudinal trends corroborate observations by the Atmospheric Infrared Sounder (AIRS). Most variance observed at climate model grid scales of 100 km is explained by spatial structure at finer spatial resolutions.
The distribution of ice and liquid particles in clouds (i.e., their thermodynamic phase) has a...
Citation
Share