Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 11, 1119-1141, 2018
https://doi.org/10.5194/amt-11-1119-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
26 Feb 2018
Experimental techniques for the calibration of lidar depolarization channels in EARLINET
Livio Belegante et al.

Viewed

Total article views: 797 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
525 252 20 797 22 23

Views and downloads (calculated since 27 Jun 2017)

Cumulative views and downloads (calculated since 27 Jun 2017)

Viewed (geographical distribution)

Total article views: 793 (including HTML, PDF, and XML)

Thereof 785 with geography defined and 8 with unknown origin.

Country # Views %
  • 1

Cited

Saved (final revised paper)

Saved (discussion paper)

Discussed (final revised paper)

Discussed (discussion paper)

Latest update: 25 Jun 2018
Publications Copernicus
Download
Short summary
This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected EARLINET lidar instruments. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range that is accepted in the literature. The depolarization accuracy estimate at 532 nm is better than ±0.03 for all cases.
This paper presents different depolarization calibration procedures used to improve the quality...
Share