Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 3 | Copyright
Atmos. Meas. Tech., 11, 1251-1272, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Mar 2018

Research article | 05 Mar 2018

Regional uncertainty of GOSAT XCO2 retrievals in China: quantification and attribution

Nian Bie et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Nian Bie on behalf of the Authors (09 Jan 2018)  Author's response    Manuscript
ED: Publish subject to technical corrections (31 Jan 2018) by Ilse Aben
Publications Copernicus
Short summary
The results imply that XCO2 from satellite observations could be reliably applied in the assessment of atmospheric CO2 enhancements induced by anthropogenic CO2 emissions. The large inconsistency among different algorithms presented in western deserts with a high albedo and dust aerosols demonstrates that further improvement is still necessary in such regions, even though many algorithms have endeavored to minimize the effects of aerosols and albedo.
The results imply that XCO2 from satellite observations could be reliably applied in the...