Articles | Volume 11, issue 3
https://doi.org/10.5194/amt-11-1313-2018
https://doi.org/10.5194/amt-11-1313-2018
Research article
 | 
05 Mar 2018
Research article |  | 05 Mar 2018

Shipborne Wind Measurement and Motion-induced Error Correction of a Coherent Doppler Lidar over the Yellow Sea in 2014

Xiaochun Zhai, Songhua Wu, Bingyi Liu, Xiaoquan Song, and Jiaping Yin

Related authors

Rayleigh wind retrieval for the ALADIN airborne demonstrator of the Aeolus mission using simulated response calibration
Xiaochun Zhai, Uwe Marksteiner, Fabian Weiler, Christian Lemmerz, Oliver Lux, Benjamin Witschas, and Oliver Reitebuch
Atmos. Meas. Tech., 13, 445–465, https://doi.org/10.5194/amt-13-445-2020,https://doi.org/10.5194/amt-13-445-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Directly measuring the power-law exponent and kinetic energy of atmospheric turbulence using coherent Doppler wind lidar
Jinhong Xian, Chao Lu, Xiaoling Lin, Honglong Yang, Ning Zhang, and Li Zhang
Atmos. Meas. Tech., 17, 1837–1850, https://doi.org/10.5194/amt-17-1837-2024,https://doi.org/10.5194/amt-17-1837-2024, 2024
Short summary
3D wind observations with a compact mobile lidar based on tropo- and stratospheric aerosol backscatter
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024,https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024,https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight
Thomas Wagner and Jānis Puķīte
Atmos. Meas. Tech., 17, 277–297, https://doi.org/10.5194/amt-17-277-2024,https://doi.org/10.5194/amt-17-277-2024, 2024
Short summary
Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024,https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary

Cited articles

Achtert, P., Brooks, I. M., Brooks, B. J., Moat, B. I., Prytherch, J., Persson, P. O. G., and Tjernström, M.: Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar, Atmos. Meas. Tech., 8, 4993–5007, https://doi.org/10.5194/amt-8-4993-2015, 2015. 
Axford, D.: On the accuracy of wind measurements using an inertial platform in an aircraft, and an example of a measurement of the vertical mesostructure of the atmosphere, J. Appl. Meteorol., 7, 645–666, 1968. 
Anctil, F., Donelan, M. A., Drennan, W. M., and Graber, H. C.: Eddy-correlation measurements of air-sea fluxes from a discus buoy, J. Atmos. Ocean. Tech., 11, 1144–1150, 1994. 
Banakh, V. and Smalikho, I.: Coherent Doppler wind lidars in a turbulent atmosphere, Artech House, Chap. 1.2, 1–10, 2013. 
Bradley, E. F., Coppin, P., and Godfrey, J.: Measurements of sensible and latent heat flux in the western equatorial Pacific Ocean, J. Geophys. Res.-Oceans, 96, 3375–3389, 1991. 
Download
Short summary
A Doppler wind lidar attitude correction method is presented. This algorithm-based method relaxes the requirements for mechanical stability and active compensation mechanisms. A shipborne wind measurement campaign was carried out in the Yellow Sea, 2014. Comparison between lidar and radiosonde wind measurements shows good consistency, indicating that the method can provide continuous and high spatio-temporal resolution measurement of atmospheric turbulence processes in the marine boundary layer.