Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 11, issue 3
Atmos. Meas. Tech., 11, 1549–1563, 2018
https://doi.org/10.5194/amt-11-1549-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 1549–1563, 2018
https://doi.org/10.5194/amt-11-1549-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Mar 2018

Research article | 20 Mar 2018

Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy

David W. T. Griffith1, Denis Pöhler2, Stefan Schmitt2, Samuel Hammer2, Sanam N. Vardag2,a, and Ulrich Platt2 David W. T. Griffith et al.
  • 1Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia
  • 2Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
  • anow at: Heidelberg Centre for the Environment, University of Heidelberg, Heidelberg, Germany

Abstract. In complex and urban environments, atmospheric trace gas composition is highly variable in time and space. Point measurement techniques for trace gases with in situ instruments are well established and accurate, but do not provide spatial averaging to compare against developing high-resolution atmospheric models of composition and meteorology with resolutions of the order of a kilometre. Open-path measurement techniques provide path average concentrations and spatial averaging which, if sufficiently accurate, may be better suited to assessment and interpretation with such models. Open-path Fourier transform spectroscopy (FTS) in the mid-infrared region, and differential optical absorption spectroscopy (DOAS) in the UV and visible, have been used for many years for open-path spectroscopic measurements of selected species in both clean air and in polluted environments. Near infrared instrumentation allows measurements over longer paths than mid-infrared FTS for species such as greenhouse gases which are not easily accessible to DOAS.

In this pilot study we present the first open-path near-infrared (4000–10 000 cm−1, 1.0–2.5 µm) FTS measurements of CO2, CH4, O2, H2O and HDO over a 1.5 km path in urban Heidelberg, Germany. We describe the construction of the open-path FTS system, the analysis of the collected spectra, several measures of precision and accuracy of the measurements, and the results a four-month trial measurement period in July–November 2014. The open-path measurements are compared to calibrated in situ measurements made at one end of the open path. We observe significant differences of the order of a few ppm for CO2 and a few tens of ppb for CH4 between the open-path and point measurements which are 2 to 4 times the measurement repeatability, but we cannot unequivocally assign the differences to specific local sources or sinks. We conclude that open-path FTS may provide a valuable new tool for investigations of atmospheric trace gas composition in complex, small-scale environments such as cities.

Publications Copernicus
Download
Short summary
Measurements of atmospheric trace gases over an open path complement in situ measurements by spatial averaging. This paper describes the first open-path measurements of CO2, CH4 and other trace gases by near-infrared Fourier transform spectroscopy. The measurements were made in Heidelberg, Germany, for 4 months in 2014 over a 1.5 km path and compared to in situ measurements made at one end of the path. The experiment setup and methods (and the comparisons of open path to in situ) are described.
Measurements of atmospheric trace gases over an open path complement in situ measurements by...
Citation