Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 3 | Copyright

Special issue: Hydrological cycle in the Mediterranean (ACP/AMT/GMD/HESS/NHESS/OS...

Atmos. Meas. Tech., 11, 1669-1688, 2018
https://doi.org/10.5194/amt-11-1669-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Mar 2018

Research article | 26 Mar 2018

High-resolution humidity profiles retrieved from wind profiler radar measurements

Frédérique Saïd1, Bernard Campistron1, and Paolo Di Girolamo2 Frédérique Saïd et al.
  • 1Laboratoire d'Aérologie, Université de Toulouse, UMR CNRS 5560, Toulouse, France
  • 2Scuola di Ingegneria, Universita degli Studi della Basilicata, Potenza, Italy

Abstract. The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25gkg−1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.

Publications Copernicus
Special issue
Download
Short summary
Vertical profiles of the atmospheric water vapor mixing ratio are retrieved with an algorithm based on the combination of measurements from a wind profiler radar and radiosoundings at a coarser time resolution. The major advance with respect to previous works is the use of the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity.
Vertical profiles of the atmospheric water vapor mixing ratio are retrieved with an algorithm...
Citation
Share