Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 11, issue 3
Atmos. Meas. Tech., 11, 1689–1705, 2018
https://doi.org/10.5194/amt-11-1689-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 11, 1689–1705, 2018
https://doi.org/10.5194/amt-11-1689-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Mar 2018

Research article | 27 Mar 2018

Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

Ira Leifer et al.
Related authors  
Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara Seas
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237,https://doi.org/10.5194/tc-2018-237, 2018
Revised manuscript not accepted
Short summary
Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara seas
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-75,https://doi.org/10.5194/tc-2018-75, 2018
Revised manuscript has not been submitted
Short summary
Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements
Sven Krautwurst, Konstantin Gerilowski, Haflidi H. Jonsson, David R. Thompson, Richard W. Kolyer, Laura T. Iraci, Andrew K. Thorpe, Markus Horstjann, Michael Eastwood, Ira Leifer, Samuel A. Vigil, Thomas Krings, Jakob Borchardt, Michael Buchwitz, Matthew M. Fladeland, John P. Burrows, and Heinrich Bovensmann
Atmos. Meas. Tech., 10, 3429–3452, https://doi.org/10.5194/amt-10-3429-2017,https://doi.org/10.5194/amt-10-3429-2017, 2017
Short summary
Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea
Ira Leifer, Denis Chernykh, Natalia Shakhova, and Igor Semiletov
The Cryosphere, 11, 1333–1350, https://doi.org/10.5194/tc-11-1333-2017,https://doi.org/10.5194/tc-11-1333-2017, 2017
Short summary
Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane
D. R. Thompson, I. Leifer, H. Bovensmann, M. Eastwood, M. Fladeland, C. Frankenberg, K. Gerilowski, R. O. Green, S. Kratwurst, T. Krings, B. Luna, and A. K. Thorpe
Atmos. Meas. Tech., 8, 4383–4397, https://doi.org/10.5194/amt-8-4383-2015,https://doi.org/10.5194/amt-8-4383-2015, 2015
Short summary
Related subject area  
Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Performance of a new coaxial ion–molecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions
Brett B. Palm, Xiaoxi Liu, Jose L. Jimenez, and Joel A. Thornton
Atmos. Meas. Tech., 12, 5829–5844, https://doi.org/10.5194/amt-12-5829-2019,https://doi.org/10.5194/amt-12-5829-2019, 2019
Short summary
Development of a balloon-borne instrument for CO2 vertical profile observations in the troposphere
Mai Ouchi, Yutaka Matsumi, Tomoki Nakayama, Kensaku Shimizu, Takehiko Sawada, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Isamu Morino, Osamu Uchino, Tomoaki Tanaka, and Ryoichi Imasu
Atmos. Meas. Tech., 12, 5639–5653, https://doi.org/10.5194/amt-12-5639-2019,https://doi.org/10.5194/amt-12-5639-2019, 2019
Short summary
Derivation of flow rate and calibration method for high-volume air samplers
Richard Hann and Mark Hermanson
Atmos. Meas. Tech., 12, 4725–4731, https://doi.org/10.5194/amt-12-4725-2019,https://doi.org/10.5194/amt-12-4725-2019, 2019
Short summary
Low-cost eddy covariance: a case study of evapotranspiration over agroforestry in Germany
Christian Markwitz and Lukas Siebicke
Atmos. Meas. Tech., 12, 4677–4696, https://doi.org/10.5194/amt-12-4677-2019,https://doi.org/10.5194/amt-12-4677-2019, 2019
Short summary
CAFE: a new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde
Jason M. St. Clair, Andrew K. Swanson, Steven A. Bailey, and Thomas F. Hanisco
Atmos. Meas. Tech., 12, 4581–4590, https://doi.org/10.5194/amt-12-4581-2019,https://doi.org/10.5194/amt-12-4581-2019, 2019
Short summary
Cited articles  
Allen, G.: Biogeochemistry: Rebalancing the global methane budget, Nature, 538, 46–48, 2016.
State of the Air: Chicago, IL, American Lung Association: 157 pp., www.lung.org/assets/documents/healthy-air/state-of-the-air/sota-2016-full.pdf (last access: March 2018), 2016.
Bao, J. W., Michelson, S. A., Persson, P. O. G., Djalalova, I. V., and Wilczak, J. M.: Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study, J. Appl. Meteorol. Clim., 47, 2372–2394, 2008.
Boucouvala, D. and Bornstein, R.: Analysis of transport patterns during an SCOS97-NARSTO episode, Atmos. Environment, 37, Supplement 2, 73–94, 2003.
Publications Copernicus
Download
Short summary
Airborne/mobile-surface data were collected to derive active oil field trace gas emissions near Bakersfield, CA, characterizing the atmosphere from the surface to above the planetary boundary layer (PBL) by combining downwind concentration anomaly (plume) above background with normal winds. Air–surface comparison for a mountain profile (0.1–2.2 km) confirmed surface winds. Annualized oil field emissions were 31.3±16 Gg CH4 and 2.4±1.2 Tg CO2. The PBL was not well mixed even 10–20 km downwind.
Airborne/mobile-surface data were collected to derive active oil field trace gas emissions near...
Citation