Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 11, issue 4
Atmos. Meas. Tech., 11, 2041–2049, 2018
https://doi.org/10.5194/amt-11-2041-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 11, 2041–2049, 2018
https://doi.org/10.5194/amt-11-2041-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Apr 2018

Research article | 11 Apr 2018

High-dynamic-range imaging for cloud segmentation

Soumyabrata Dev et al.

Related authors

Estimating solar irradiance using sky imagers
Soumyabrata Dev, Florian M. Savoy, Yee Hui Lee, and Stefan Winkler
Atmos. Meas. Tech., 12, 5417–5429, https://doi.org/10.5194/amt-12-5417-2019,https://doi.org/10.5194/amt-12-5417-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020,https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
SegCloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation
Wanyi Xie, Dong Liu, Ming Yang, Shaoqing Chen, Benge Wang, Zhenzhu Wang, Yingwei Xia, Yong Liu, Yiren Wang, and Chaofang Zhang
Atmos. Meas. Tech., 13, 1953–1961, https://doi.org/10.5194/amt-13-1953-2020,https://doi.org/10.5194/amt-13-1953-2020, 2020
Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements
Brent A. McBride, J. Vanderlei Martins, Henrique M. J. Barbosa, William Birmingham, and Lorraine A. Remer
Atmos. Meas. Tech., 13, 1777–1796, https://doi.org/10.5194/amt-13-1777-2020,https://doi.org/10.5194/amt-13-1777-2020, 2020
Short summary
Towards objective identification and tracking of convective outflow boundaries in next-generation geostationary satellite imagery
Jason M. Apke, Kyle A. Hilburn, Steven D. Miller, and David A. Peterson
Atmos. Meas. Tech., 13, 1593–1608, https://doi.org/10.5194/amt-13-1593-2020,https://doi.org/10.5194/amt-13-1593-2020, 2020
Short summary
Cloud detection over snow and ice with oxygen A- and B-band observations from the Earth Polychromatic Imaging Camera (EPIC)
Yaping Zhou, Yuekui Yang, Meng Gao, and Peng-Wang Zhai
Atmos. Meas. Tech., 13, 1575–1591, https://doi.org/10.5194/amt-13-1575-2020,https://doi.org/10.5194/amt-13-1575-2020, 2020
Short summary

Cited articles

Akyüz, A. O.: High dynamic range imaging pipeline on the GPU, J. Real-Time Image Process., 10, 273–287, https://doi.org/10.1007/s11554-012-0270-9, 2015.
Bagon, S.: Matlab wrapper for graph cut, available at: http://www.wisdom.weizmann.ac.il/~bagon (last access: April 2017), 2006.
Boykov, Y. and Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, in: Proc. International Conference on Computer Vision (ICCV), https://doi.org/10.1109/ICCV.2001.937505, 2001.
Boykov, Y. and Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE T. Pattern. Anal., 26, 1124–1137, https://doi.org/10.1109/TPAMI.2004.60, 2004.
Boykov, Y., Veksler, O., and Zabih, R.: Fast approximate energy minimization via graph cuts, IEEE T. Pattern. Anal., 23, 1222–1239, https://doi.org/10.1109/34.969114, 2001.
Publications Copernicus
Download
Short summary
Sky–cloud images obtained from ground-based sky cameras are usually captured using a fish-eye lens with a wide field of view. However, the sky exhibits a large variation in the scene luminance. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. In this paper, we propose HDRCloudSeg – an effective method for cloud segmentation using high-dynamic-range (HDR) imaging. We describe the entire process and also release a new database.
Sky–cloud images obtained from ground-based sky cameras are usually captured using a fish-eye...
Citation