Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 4 | Copyright
Atmos. Meas. Tech., 11, 2101-2118, 2018
https://doi.org/10.5194/amt-11-2101-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Apr 2018

Research article | 12 Apr 2018

Increased aerosol content in the atmosphere over Ukraine during summer 2010

Evgenia Galytska1, Vassyl Danylevsky2, René Hommel1,a, and John P. Burrows1 Evgenia Galytska et al.
  • 1Institute of Environmental Physics, University of Bremen, Bremen, Germany
  • 2Taras Shevchenko National University, Kyiv, Ukraine
  • anow at: Hommel & Graf Environmental, Hamburg, Germany

Abstract. In this paper we assessed the influence of biomass burning during forest fires throughout summer (1 June–31 August) 2010 on aerosol abundance, dynamics, and its properties over Ukraine. We also considered influences and effects over neighboring countries: European Russia, Estonia, Belarus, Poland, Moldova, and Romania.

We used MODIS satellite instrument data to study fire distribution. We also used ground-based remote measurements from the international sun photometer network AERONET plus MODIS and CALIOP satellite instrument data to determine the aerosol content and optical properties in the atmosphere over Eastern Europe. We applied the HYSPLIT model to investigate atmospheric dynamics and model pathways of particle transport.

As with previous studies, we found that the highest aerosol content was observed over Moscow in the first half of August 2010 due to the proximity of the most active fires. Large temporal variability of the aerosol content with pronounced pollution peaks during 7–17 August was observed at the Ukrainian (Kyiv and Sevastopol), Belarusian (Minsk), Estonian (Toravere), and Romanian (Bucharest) AERONET sites.

We analyzed aerosol spatiotemporal distribution over Ukraine using MODIS AOD 550nm and further compared with the Kyiv AERONET site sun photometer measurements; we also compared CALIOP AOD 532nm with MODIS AOD data. We analyzed vertical distribution of aerosol extinction at 532nm, retrieved from CALIOP measurements, for the territory of Ukraine at locations where high AOD values were observed during intense fires. We estimated the influence of fires on the spectral single scattering albedo, size distribution, and complex refractive indices using Kyiv AERONET measurements performed during summer 2010.

In this study we showed that the maximum AOD in the atmosphere over Ukraine recorded in summer 2010 was caused by particle transport from the forest fires in Russia. Those fires caused the highest AOD 500nm over the Kyiv site, which in August 2010 exceeded multiannual monthly mean for the entire observational period (2008–2016, excluding 2010) by a factor of 2.2. Also, the influence of fires resulted in a change of the particle microphysics in the polluted regions.

Publications Copernicus
Download
Short summary
This research assesses the influence of biomass burning during forest fires throughout summer 2010 on aerosol load over Ukraine, the European territory of Russia (ETR) and Eastern Europe. We apply and compare ground-based and satellite measurements to determine aerosol content, dynamics, and properties. With the application of modeling techniques (HYSPLIT), we show that the maximum AOD in August 2010 over Ukraine was caused by particle transport from the forest fires in the ETR.
This research assesses the influence of biomass burning during forest fires throughout summer...
Citation
Share