Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 5
Atmos. Meas. Tech., 11, 2601–2631, 2018
https://doi.org/10.5194/amt-11-2601-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Observing Atmosphere and Climate with Occultation Techniques...

Atmos. Meas. Tech., 11, 2601–2631, 2018
https://doi.org/10.5194/amt-11-2601-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 May 2018

Research article | 04 May 2018

Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles

Jakob Schwarz et al.
Viewed  
Total article views: 1,047 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
715 302 30 1,047 33 35
  • HTML: 715
  • PDF: 302
  • XML: 30
  • Total: 1,047
  • BibTeX: 33
  • EndNote: 35
Views and downloads (calculated since 13 Jun 2017)
Cumulative views and downloads (calculated since 13 Jun 2017)
Viewed (geographical distribution)  
Total article views: 1,025 (including HTML, PDF, and XML) Thereof 1,015 with geography defined and 10 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 13 Dec 2019
Publications Copernicus
Download
Short summary
We process global navigation satellite system radio occultation (RO) observations in a new way with integrated uncertainty propagation; in this study we focus on retrieving atmospheric bending angles from RO excess phase profiles. We find that this new approach within our novel Reference Occultation Processing System (rOPS) exploits the strengths of RO such as its high accuracy and long-term stability in a reliable manner for global climate monitoring and other weather and climate uses.
We process global navigation satellite system radio occultation (RO) observations in a new way...
Citation