Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 11, issue 1 | Copyright
Atmos. Meas. Tech., 11, 291-313, 2018
https://doi.org/10.5194/amt-11-291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Jan 2018

Research article | 15 Jan 2018

A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring

Naomi Zimmerman et al.
Data sets

A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring (Version v1) N. Zimmerman, A. Presto, S. Kumar, J. Gu, A. Hauryliuk, E. Robinson, A. Robinson, and R. Subramanian https://doi.org/10.5281/zenodo.1146109

Publications Copernicus
Download
Short summary
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by inconsistent performance for precision, accuracy, and drift. CMU and SenSevere collaborated to develop the RAMP, which uses electrochemical sensors. We present a machine learning algorithm that overcomes previous performance issues and meets US EPA's data quality recommendations for personal exposure for NO2 and tougher "supplemental monitoring" standards for CO & ozone across 19 RAMPs for several months.
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by...
Citation
Share