Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
Volume 11, issue 1
Atmos. Meas. Tech., 11, 291-313, 2018
https://doi.org/10.5194/amt-11-291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 291-313, 2018
https://doi.org/10.5194/amt-11-291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Jan 2018

Research article | 15 Jan 2018

A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring

Naomi Zimmerman et al.
Related authors  
Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring
Carl Malings, Rebecca Tanzer, Aliaksei Hauryliuk, Sriniwasa P. N. Kumar, Naomi Zimmerman, Levent B. Kara, Albert A. Presto, and R. Subramanian
Atmos. Meas. Tech., 12, 903-920, https://doi.org/10.5194/amt-12-903-2019,https://doi.org/10.5194/amt-12-903-2019, 2019
Short summary
Related subject area  
Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment
Shuaixi Liang, Min Qin, Pinhua Xie, Jun Duan, Wu Fang, Yabai He, Jin Xu, Jingwei Liu, Xin Li, Ke Tang, Fanhao Meng, Kaidi Ye, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 2499-2512, https://doi.org/10.5194/amt-12-2499-2019,https://doi.org/10.5194/amt-12-2499-2019, 2019
Short summary
Atmospheric CO2, CH4, and CO with the CRDS technique at the Izaña Global GAW station: instrumental tests, developments, and first measurement results
Angel J. Gomez-Pelaez, Ramon Ramos, Emilio Cuevas, Vanessa Gomez-Trueba, and Enrique Reyes
Atmos. Meas. Tech., 12, 2043-2066, https://doi.org/10.5194/amt-12-2043-2019,https://doi.org/10.5194/amt-12-2043-2019, 2019
Short summary
Possible errors in flux measurements due to limited digitalization
Thomas Foken, Wolfgang Babel, and Christoph Thomas
Atmos. Meas. Tech., 12, 971-976, https://doi.org/10.5194/amt-12-971-2019,https://doi.org/10.5194/amt-12-971-2019, 2019
Short summary
Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring
Carl Malings, Rebecca Tanzer, Aliaksei Hauryliuk, Sriniwasa P. N. Kumar, Naomi Zimmerman, Levent B. Kara, Albert A. Presto, and R. Subramanian
Atmos. Meas. Tech., 12, 903-920, https://doi.org/10.5194/amt-12-903-2019,https://doi.org/10.5194/amt-12-903-2019, 2019
Short summary
Analysis of spatial and temporal patterns of on-road NO2 concentrations in Hong Kong
Ying Zhu, Ka Lok Chan, Yun Fat Lam, Martin Horbanski, Denis Pöhler, Johannes Boll, Ivo Lipkowitsch, Sheng Ye, and Mark Wenig
Atmos. Meas. Tech., 11, 6719-6734, https://doi.org/10.5194/amt-11-6719-2018,https://doi.org/10.5194/amt-11-6719-2018, 2018
Short summary
Cited articles  
Air Quality England: Air Pollution Report, 1st January to 31st December 2016, Cambridge Parker Street (Site ID: CAM 1), 1–4, available at: http://www.airqualityengland.co.uk/site/statistics?site_id=CAM1 (last access: 22 June 2017), 2015.
Bart, M., Williams, D. E., Ainslie, B., McKendry, I., Salmond, J., Grange, S. K., Alavi-Shoshtari, M., Steyn, D., and Henshaw, G. S.: High density ozone monitoring using gas sensitive semi-conductor sensors in the lower Fraser valley, British Columbia, Environ. Sci. Technol., 48, 3970–3977, https://doi.org/10.1021/es404610t, 2014.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Publications Copernicus
Download
Short summary
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by inconsistent performance for precision, accuracy, and drift. CMU and SenSevere collaborated to develop the RAMP, which uses electrochemical sensors. We present a machine learning algorithm that overcomes previous performance issues and meets US EPA's data quality recommendations for personal exposure for NO2 and tougher "supplemental monitoring" standards for CO & ozone across 19 RAMPs for several months.
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by...
Citation