Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 11, issue 1
Atmos. Meas. Tech., 11, 291–313, 2018
https://doi.org/10.5194/amt-11-291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 291–313, 2018
https://doi.org/10.5194/amt-11-291-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Jan 2018

Research article | 15 Jan 2018

A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring

Naomi Zimmerman et al.

Related authors

Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring
Carl Malings, Rebecca Tanzer, Aliaksei Hauryliuk, Sriniwasa P. N. Kumar, Naomi Zimmerman, Levent B. Kara, Albert A. Presto, and R. Subramanian
Atmos. Meas. Tech., 12, 903–920, https://doi.org/10.5194/amt-12-903-2019,https://doi.org/10.5194/amt-12-903-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Correcting the impact of the isotope composition on the mixing ratio dependency of water vapour isotope measurements with cavity ring-down spectrometers
Yongbiao Weng, Alexandra Touzeau, and Harald Sodemann
Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020,https://doi.org/10.5194/amt-13-3167-2020, 2020
Short summary
Correcting high-frequency losses of reactive nitrogen flux measurements
Pascal Wintjen, Christof Ammann, Frederik Schrader, and Christian Brümmer
Atmos. Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020,https://doi.org/10.5194/amt-13-2923-2020, 2020
Short summary
Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach
Martin Kunz, Jost V. Lavric, Rainer Gasche, Christoph Gerbig, Richard H. Grant, Frank-Thomas Koch, Marcus Schumacher, Benjamin Wolf, and Matthias Zeeman
Atmos. Meas. Tech., 13, 1671–1692, https://doi.org/10.5194/amt-13-1671-2020,https://doi.org/10.5194/amt-13-1671-2020, 2020
Short summary
InnFLUX – an open-source code for conventional and disjunct eddy covariance analysis of trace gas measurements: an urban test case
Marcus Striednig, Martin Graus, Tilmann D. Märk, and Thomas G. Karl
Atmos. Meas. Tech., 13, 1447–1465, https://doi.org/10.5194/amt-13-1447-2020,https://doi.org/10.5194/amt-13-1447-2020, 2020
Short summary
Integration and calibration of NDIR CO2 low-cost sensors, and their operation in a sensor network covering Switzerland
Michael Mueller, Peter Graf, Jonas Meyer, Anastasia Pentina, Brunner Dominik, Fernando Perez-Cruz, Christoph Hueglin, and Lukas Emmenegger
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-408,https://doi.org/10.5194/amt-2019-408, 2019
Revised manuscript accepted for AMT

Cited articles

Air Quality England: Air Pollution Report, 1st January to 31st December 2016, Cambridge Parker Street (Site ID: CAM 1), 1–4, available at: http://www.airqualityengland.co.uk/site/statistics?site_id=CAM1 (last access: 22 June 2017), 2015.
Bart, M., Williams, D. E., Ainslie, B., McKendry, I., Salmond, J., Grange, S. K., Alavi-Shoshtari, M., Steyn, D., and Henshaw, G. S.: High density ozone monitoring using gas sensitive semi-conductor sensors in the lower Fraser valley, British Columbia, Environ. Sci. Technol., 48, 3970–3977, https://doi.org/10.1021/es404610t, 2014.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Publications Copernicus
Download
Short summary
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by inconsistent performance for precision, accuracy, and drift. CMU and SenSevere collaborated to develop the RAMP, which uses electrochemical sensors. We present a machine learning algorithm that overcomes previous performance issues and meets US EPA's data quality recommendations for personal exposure for NO2 and tougher "supplemental monitoring" standards for CO & ozone across 19 RAMPs for several months.
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by...
Citation