Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 11, 3031-3046, 2018
https://doi.org/10.5194/amt-11-3031-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
29 May 2018
Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer
Rei Kudo1, Toshinori Aoyagi2, and Tomoaki Nishizawa3 1Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, 305-0052, Japan
2Japan Meteorological Agency, Tokyo, 100-8122, Japan
3National Institute for Environmental Studies, Tsukuba, 305-0053, Japan
Abstract. Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km−1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (−0.2 to −0.6 K) and the direct heating of aerosols in the FA (0.0 to 0.4 K) strengthened the capping inversion around the top of the ABL. Consequently, the ABL height was decreased by 133 to 208 m in simulations with aerosols compared to simulations without aerosols. (2) We also conducted simulations in which all aerosols were compressed into the ABL but in which the columnar properties were the same and compared with the simulation results for uncompressed aerosol profiles. The results showed that the reductions in net downward radiation and in sensible and latent heat fluxes were the same in both types of simulations. However, the capping inversion in the simulations with compression was weakened owing to aerosol direct heating in the ABL and the lack of direct heating in the FA. This resulted in an increase in the ABL height, compared with that in the simulations without compression. (3) The dependencies of the 2 m temperature and ABL height on the optical thickness and Ångström exponent in the FA were investigated using the results of the numerical sensitivity tests. The 2 m temperature and ABL height was decreased with an increase in the optical thickness, and their reduction rates increase with a decrease in the Ångström exponent because the optical thickness in the near-infrared wavelength region was large when the Ångström exponent was small. However, there was a case in which the Ångström exponent was large but the decrease in the ABL height was the largest of all the simulation results. In this case, the strong capping inversion due to the large extinction coefficient around the top of the ABL was an import factor. These results suggest that the vertical profiles of the aerosol physical and optical properties, and the resulting direct heating has important effects on the ABL evolution.
Citation: Kudo, R., Aoyagi, T., and Nishizawa, T.: Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer, Atmos. Meas. Tech., 11, 3031-3046, https://doi.org/10.5194/amt-11-3031-2018, 2018.
Publications Copernicus
Download
Short summary
Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated by the synergistic method using lidar and sky radiometer. The retrieved vertical profiles were input to the one-dimensional atmospheric model, and the impacts of the transported aerosols on the evolution of the atmospheric boundary layer (ABL) were studied. The vertical profile of the aerosol direct heating has important effects on the ABL evolution.
Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means...
Share