Supplement of Atmos. Meas. Tech., 11, 3081–3089, 2018
https://doi.org/10.5194/amt-11-3081-2018-supplement
© Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Identification of organic hydroperoxides and peroxo acids using atmospheric pressure chemical ionization–tandem mass spectrometry (APCI-MS/MS): application to secondary organic aerosol

Shouming Zhou et al.

Correspondence to: Shouming Zhou (szhou@chem.utoronto.ca)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1. Particle size distribution of secondary organic aerosol formed from ozonolysis of α-pinene.

Figure S2. LC-MS/MS chromatogram of cumene hydroperoxide (2.65 uM) with SRM of m/z 170> m/z 119 (loss of 51 Da).
Figure S3. LC-MS/MS calibration of cumene hydroperoxide

Figure S4. Chemical Structures and the molecular weights (MW) of the ROOH analyzed in this work.
Figure S5. Other chemicals tested in this work.

Figure S6. Fragmentation of [M+NH₄]⁺ for ROOH.
Figure S7. Product spectra of $[M+NH_4]^+$ for (A) benzoyl peroxide; (B) di(dodecanoyl) peroxide; (C) di-tert-butyl peroxide; (D) meso-erythritol; (E) pinonic acid; and (F) 2-nonenal.
(A)

Relative Intensity

m/z

(B)

Relative Intensity

m/z

-51 Da
Figure S8. Product spectra of [M+NH$_4$]+ for: (A) tert-butyl hydroperoxide; (B) 2-butanone peroxide; and (C) peracetic acid.
Figure S9. (A) Mass spectrum of reaction of glyoxal with H₂O₂ in the presence of AA; (B) Product mass spectrum of m/z 128 from (A).
Figure S10. Product spectrum of m/z 206 from α-pinene SOA.
Figure S11. Mass spectra of (A) SOA, and (B) ROOH from ozone reaction with α-pinene under dry (RH<5%) and humid (RH=50%) conditions.