Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 5
Atmos. Meas. Tech., 11, 3145–3159, 2018
https://doi.org/10.5194/amt-11-3145-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 3145–3159, 2018
https://doi.org/10.5194/amt-11-3145-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 31 May 2018

Research article | 31 May 2018

Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions

Pawan Gupta et al.
Related authors  
Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019,https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, and Leigh A. Munchak
Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016,https://doi.org/10.5194/amt-9-3293-2016, 2016
Short summary
Top-of-the-atmosphere shortwave flux estimation from satellite observations: an empirical neural network approach applied with data from the A-train constellation
Pawan Gupta, Joanna Joiner, Alexander Vasilkov, and Pawan K. Bhartia
Atmos. Meas. Tech., 9, 2813–2826, https://doi.org/10.5194/amt-9-2813-2016,https://doi.org/10.5194/amt-9-2813-2016, 2016
Short summary
Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites
Aaron R. Naeger, Pawan Gupta, Bradley T. Zavodsky, and Kevin M. McGrath
Atmos. Meas. Tech., 9, 2463–2482, https://doi.org/10.5194/amt-9-2463-2016,https://doi.org/10.5194/amt-9-2463-2016, 2016
Short summary
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Analysis of global three-dimensional aerosol structure with spectral radiance matching
Dong Liu, Sijie Chen, Chonghui Cheng, Howard W. Barker, Changzhe Dong, Ju Ke, Shuaibo Wang, and Zhuofan Zheng
Atmos. Meas. Tech., 12, 6541–6556, https://doi.org/10.5194/amt-12-6541-2019,https://doi.org/10.5194/amt-12-6541-2019, 2019
Short summary
A comparative evaluation of Aura-OMI and SKYNET near-UV single-scattering albedo products
Hiren Jethva and Omar Torres
Atmos. Meas. Tech., 12, 6489–6503, https://doi.org/10.5194/amt-12-6489-2019,https://doi.org/10.5194/amt-12-6489-2019, 2019
Short summary
Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
Zhenping Yin, Albert Ansmann, Holger Baars, Patric Seifert, Ronny Engelmann, Martin Radenz, Cristofer Jimenez, Alina Herzog, Kevin Ohneiser, Karsten Hanbuch, Luc Blarel, Philippe Goloub, Gaël Dubois, Stephane Victori, and Fabrice Maupin
Atmos. Meas. Tech., 12, 5685–5698, https://doi.org/10.5194/amt-12-5685-2019,https://doi.org/10.5194/amt-12-5685-2019, 2019
Short summary
Intercomparison of aerosol volume size distributions derived from AERONET ground-based remote sensing and LARGE in situ aircraft profiles during the 2011–2014 DRAGON and DISCOVER-AQ experiments
Joel S. Schafer, Tom F. Eck, Brent N. Holben, Kenneth L. Thornhill, Luke D. Ziemba, Patricia Sawamura, Richard H. Moore, Ilya Slutsker, Bruce E. Anderson, Alexander Sinyuk, David M. Giles, Alexander Smirnov, Andreas J. Beyersdorf, and Edward L. Winstead
Atmos. Meas. Tech., 12, 5289–5301, https://doi.org/10.5194/amt-12-5289-2019,https://doi.org/10.5194/amt-12-5289-2019, 2019
Short summary
Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign
Myungje Choi, Hyunkwang Lim, Jhoon Kim, Seoyoung Lee, Thomas F. Eck, Brent N. Holben, Michael J. Garay, Edward J. Hyer, Pablo E. Saide, and Hongqing Liu
Atmos. Meas. Tech., 12, 4619–4641, https://doi.org/10.5194/amt-12-4619-2019,https://doi.org/10.5194/amt-12-4619-2019, 2019
Short summary
Cited articles  
Al-Saadi, J., Szykman, J., Pierce, R. B., Kittaka, C., Neil, D., Chu, D. A., Remer, L. A., Gumley, L., Prins, E., Weinstock, L., MacDonald, C., Wayland, R., Dimmick, F., and Fishman, J.: Improving national air quality forecasts with satellite aerosol observations, B. Am. Meteorol. Soc., 86, 1249–1261, https://doi.org/10.1175/BAMS-86-9-1249, 2005. 
Christopher, S. A. and Zhang, J.: Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans, Geophys. Res. Lett., 29, 1859, https://doi.org/10.1029/2002GL014803, 2002. 
Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanre, D., and Holben, B. N.: Validation of MODIS aerosol optical depth retrieval over land, Geophys. Res. Lett., 29, 1617, https://doi.org/10.1029/2001GL013205, 2002. 
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20696, 10.1029/2000JD900282, 2000. 
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104, 31333–31349, 1999. 
Publications Copernicus
Download
Short summary
In this study, we perform global validation of MODIS high-resolution (3 km) AOD over global land by comparing against AERONET measurements. The MODIS–AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error.
In this study, we perform global validation of MODIS high-resolution (3 km) AOD over global land...
Citation