Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 6
Atmos. Meas. Tech., 11, 3373–3396, 2018
https://doi.org/10.5194/amt-11-3373-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 3373–3396, 2018
https://doi.org/10.5194/amt-11-3373-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Jun 2018

Research article | 13 Jun 2018

The Community Cloud retrieval for CLimate (CC4CL) – Part 1: A framework applied to multiple satellite imaging sensors

Oliver Sus et al.
Related authors  
A Fundamental climate data record of SMMR, SSM/I, and SSMIS brightness temperatures
Karsten Fennig, Marc Schröder, Axel Andersson, and Rainer Hollmann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-146,https://doi.org/10.5194/essd-2019-146, 2019
Manuscript under review for ESSD
Short summary
Open cells can decrease the mixing of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer
Steven J. Abel, Paul A. Barrett, Paquita Zuidema, Jianhao Zhang, Matt Christensen, Fanny Peers, Jonathan W. Taylor, Ian Crawford, Keith N. Bower, and Michael Flynn
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-738,https://doi.org/10.5194/acp-2019-738, 2019
Manuscript under review for ACP
Short summary
Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in Northern Europe
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-225,https://doi.org/10.5194/amt-2019-225, 2019
Manuscript under review for AMT
Cloud_cci AVHRR-PM dataset version 3: 35 year climatology of global cloud and radiation properties
Martin Stengel, Stefan Stapelberg, Oliver Sus, Stephan Finkensieper, Benjamin Würzler, Daniel Philipp, Rainer Hollmann, Caroline Poulsen, Matthew Christensen, and Gregory McGarragh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-104,https://doi.org/10.5194/essd-2019-104, 2019
Manuscript under review for ESSD
Short summary
tobac v1.0: towards a flexible framework for tracking and analysis of clouds in diverse datasets
Max Heikenfeld, Peter J. Marinescu, Matthew Christensen, Duncan Watson-Parris, Fabian Senf, Susan C. van den Heever, and Philip Stier
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-105,https://doi.org/10.5194/gmd-2019-105, 2019
Revised manuscript accepted for GMD
Short summary
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Use of spectral cloud emissivities and their related uncertainties to infer ice cloud boundaries: methodology and assessment using CALIPSO cloud products
Hye-Sil Kim, Bryan A. Baum, and Yong-Sang Choi
Atmos. Meas. Tech., 12, 5039–5054, https://doi.org/10.5194/amt-12-5039-2019,https://doi.org/10.5194/amt-12-5039-2019, 2019
Short summary
The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow
Shannon L. Mason, Robin J. Hogan, Christopher D. Westbrook, Stefan Kneifel, Dmitri Moisseev, and Leonie von Terzi
Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019,https://doi.org/10.5194/amt-12-4993-2019, 2019
Short summary
Calibration of the 2007–2017 record of Atmospheric Radiation Measurements cloud radar observations using CloudSat
Pavlos Kollias, Bernat Puigdomènech Treserras, and Alain Protat
Atmos. Meas. Tech., 12, 4949–4964, https://doi.org/10.5194/amt-12-4949-2019,https://doi.org/10.5194/amt-12-4949-2019, 2019
Short summary
All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud
Alan J. Geer, Stefano Migliorini, and Marco Matricardi
Atmos. Meas. Tech., 12, 4903–4929, https://doi.org/10.5194/amt-12-4903-2019,https://doi.org/10.5194/amt-12-4903-2019, 2019
Short summary
peakTree: a framework for structure-preserving radar Doppler spectra analysis
Martin Radenz, Johannes Bühl, Patric Seifert, Hannes Griesche, and Ronny Engelmann
Atmos. Meas. Tech., 12, 4813–4828, https://doi.org/10.5194/amt-12-4813-2019,https://doi.org/10.5194/amt-12-4813-2019, 2019
Short summary
Cited articles  
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012. a
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kållberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim archive Version 2.0, Shinfield Park, Reading, 2011. a, b
CDO: Climate Data Operators, available at: http://www.mpimet.mpg.de/cdo, last access: 1 July 2015. a
Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A., and Pelon, J.: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations, J. Geophys. Res.-Atmos., 118, 7962–7981, https://doi.org/10.1002/jgrd.50579, 2013. a
Christensen, M. W., Stephens, G. L., and Lebsock, M. D.: Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data, J. Geophys. Res.-Atmos., 118, 12120–12131, https://doi.org/10.1002/2013JD020224, 2013. a
Publications Copernicus
Short summary
This paper presents a new cloud detection and classification framework, CC4CL. It applies a sophisticated optimal estimation method to derive cloud variables from satellite data of various polar-orbiting platforms and sensors (AVHRR, MODIS, AATSR). CC4CL provides explicit uncertainty quantification and long-term consistency for decadal timeseries at various spatial resolutions. We analysed 5 case studies to show that cloud height estimates are very realistic unless optically thin clouds overlap.
This paper presents a new cloud detection and classification framework, CC4CL. It applies a...
Citation