Alexandrov, M. D., Cairns, B., Emde, C., Ackerman, A. S., and van Diedenhoven, B.:
Accuracy assessments of cloud droplet size retrievals from polarized
reflectance measurements by the research scanning polarimeter, Remote Sens.
Environ., 125, 92–111, https://doi.org/10.1016/j.rse.2012.07.012, 2012.
Alkasem, A., Szczap, F., Cornet, C., Shcherbakov, V., Gour, Y., Jourdan, O.,
Labonnote, L. C., and Mioche, G.: Effects of cirrus heterogeneity on lidar
CALIOP/CALIPSO data, J. Quant. Spectrosc. Ra., 202, 38–49,
https://doi.org/10.1016/j.jqsrt.2017.07.005, 2017.
Barker, H. W., Wiellicki, B. A., and Parker, L.: A Parameterization for
Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer
Clouds. Part II: Validation Using Satellite Data, J. Atmos. Sci., 53,
2304–2316, https://doi.org/10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2, 1996.
Breon, F. M. and Doutriaux-Boucher, M.: A comparison of cloud droplet
radii measured from space, IEEE T. Geosci. Remote, 43, 1796–1805,
https://doi.org/10.1109/TGRS.2005.852838, 2005.
Bréon, F.-M. and Goloub, P.: Cloud droplet effective radius from
spaceborne polarization measurements, Geophys. Res. Lett., 25, 1879–1882,
https://doi.org/10.1029/98GL01221, 1998.
Buriez, J. C., Vanbauce, C., Parol, F., Goloub, P., Herman, M., Bonnel, B.,
Fouquart, Y., Couvert, P., and Seze, G.: Cloud detection and derivation of
cloud properties from POLDER, Int. J. Remote Sens., 18, 2785–2813,
https://doi.org/10.1080/014311697217332, 1997.
Buriez, J.-C., Doutriaux-Boucher, M., Parol, F., and Loeb, N. G.: Angular
Variability of the Liquid Water Cloud Optical Thickness Retrieved from
ADEOS–POLDER, J. Atmos. Sci., 58, 3007–3018,
https://doi.org/10.1175/1520-0469(2001)058<3007:AVOTLW>2.0.CO;2, 2001.
Buriez, J.-C., Parol, F., Cornet, C., and Doutriaux-Boucher, M.: An
improved derivation of the top-of-atmosphere albedo from POLDER/ADEOS-2:
Narrowband albedos, J. Geophys. Res.-Atmos., 110, D05202,
https://doi.org/10.1029/2004JD005243, 2005.
Cahalan, R. F.: Bounded cascade clouds: albedo and effective thickness,
Nonlin. Processes Geophys., 1, 156–167, https://doi.org/10.5194/npg-1-156-1994, 1994.
Chand, D., Anderson, T. L., Wood, R., Charlson, R. J., Hu, Y., Liu, Z., and
Vaughan, M.: Quantifying above-cloud aerosol using spaceborne lidar for
improved understanding of cloudy-sky direct climate forcing, J. Geophys.
Res.-Atmos., 113, D13206, https://doi.org/10.1029/2007JD009433, 2008.
Cornet, C., Isaka, H., Guillemet, B., and Szczap, F.: Neural network
retrieval of cloud parameters of inhomogeneous clouds from multispectral and
multiscale radiance data: Feasibility study, J. Geophys. Res.-Atmos.,
109, D12203, https://doi.org/10.1029/2003JD004186, 2004.
Cornet, C., Buriez, J.-C., Riédi, J., Isaka, H., and Guillemet, B.:
Case study of inhomogeneous cloud parameter retrieval from MODIS data, Geophys. Res. Lett., 32, L13807, https://doi.org/10.1029/2005GL022791, 2005.
Cornet, C., C.-Labonnote, L., and Szczap, F.: Three-dimensional polarized
Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3-D effects on
polarized visible reflectances of a cirrus cloud, J. Quant. Spectrosc. Ra., 111, 174–186, https://doi.org/10.1016/j.jqsrt.2009.06.013, 2010.
Cornet, C., Szczap, F., C.-Labonnote, L., Fauchez, T., Parol, F., Thieuleux,
F., Riedi, J., Dubuisson, P., and Ferlay, N.: Evaluation of cloud
heterogeneity effects on total and polarized visible radiances as measured
by POLDER/PARASOL and consequences for retrieved cloud properties,
Proceedings of the International Radiation Symposium (IRC/IAMAS), AIP
Publishing, 99–102, https://doi.org/10.1063/1.4804717, 2013.
Costantino, L. and Bréon, F.-M.: Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and
CALIPSO observations, Atmos. Chem. Phys., 13, 69–88, https://doi.org/10.5194/acp-13-69-2013, 2013.
Davis, A. B. and Marshak, A.: Solar radiation transport in the cloudy
atmosphere: a 3-D perspective on observations and climate impacts, Rep. Prog. Phys., 73, 026801, https://doi.org/10.1088/0034-4885/73/2/026801, 2010.
Davis, A. B., Garay, M. J., Xu, F., Qu, Z., and Emde, C.: 3-D radiative
transfer effects in multi-angle/multispectral radio-polarimetric signals
from a mixture of clouds and aerosols viewed by a non-imaging sensor,
Presented at the Polarization Science and Remote Sensing VI, International
Society for Optics and Photonics, p. 887309,
https://doi.org/10.1117/12.2023733, 2013.
Deaconu, L. T., Waquet, F., Josset, D., Ferlay, N., Peers, F., Thieuleux, F., Ducos, F., Pascal, N., Tanré, D., Pelon, J., and Goloub, P.:
Consistency of aerosols above clouds characterization from A-Train active and passive measurements, Atmos. Meas. Tech., 10, 3499–3523,
https://doi.org/10.5194/amt-10-3499-2017, 2017.
Deschamps, P.-Y., Breon, F.-M., Leroy, M., Podaire, A., Bricaud, A., Buriez,
J.-C., and Seze, G.: The POLDER mission: instrument characteristics and
scientific objectives, IEEE T. Geosci. Remote, 32, 598–615,
https://doi.org/10.1109/36.297978, 1994.
Emde, C., Barlakas, V., Cornet, C., Evans, F., Korkin, S., Ota, Y.,
Labonnote, L. C., Lyapustin, A., Macke, A., Mayer, B., and Wendisch, M.:
IPRT polarized radiative transfer model intercomparison project – Phase A, J. Quant. Spectrosc. Ra., 164,
8–36,
https://doi.org/10.1016/j.jqsrt.2015.05.007, 2015.
Emde, C., Barkalas, V., Cornet, C., Evans, F., Wang, Z., Labonnote, L.C.,
Macke, A., Mayer, B., and Wendisch, M.: IPRT polarized radiative transfer
model intercomparison project – Three-dimensional test cases (phase B), J. Quant. Spectrosc. Ra., 209,
19–44,
https://doi.org/10.1016/j.jqsrt.2018.01.024, 2018.
Fauchez, T., Cornet, C., Szczap, F., Dubuisson, P., and Rosambert, T.: Impact of cirrus clouds heterogeneities on top-of-atmosphere thermal
infrared radiation, Atmos. Chem. Phys., 14, 5599–5615, https://doi.org/10.5194/acp-14-5599-2014, 2014.
Fauchez, T., Dubuisson, P., Cornet, C., Szczap, F., Garnier, A., Pelon, J., and Meyer, K.:
Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared
radiometry, Atmos. Meas. Tech., 8, 633–647, https://doi.org/10.5194/amt-8-633-2015, 2015.
Goloub, P., Deuze, J. L., Herman, M., and Fouquart, Y.: Analysis of the
POLDER polarization measurements performed over cloud covers, IEEE T. Geosci. Remote, 32, 78–88, https://doi.org/10.1109/36.285191, 1994.
Hu, Y., Vaughan, M., Liu, Z., Powell, K., and Rodier, S.: Retrieving
Optical Depths and Lidar Ratios for Transparent Layers Above Opaque Water
Clouds From CALIPSO Lidar Measurements, IEEE Geosci. Remote S., 4,
523–526, https://doi.org/10.1109/LGRS.2007.901085, 2007.
Iwabuchi, H. and Hayasaka, T.: Effects of Cloud Horizontal Inhomogeneity
on the Optical Thickness Retrieved from Moderate-Resolution Satellite Data, J. Atmos. Sci., 59,
2227–2242,
https://doi.org/10.1175/1520-0469(2002)059<2227:EOCHIO>2.0.CO;2, 2002.
Jethva, H., Torres, O., Waquet, F., Chand, D., and Hu, Y.: How do A-train
sensors intercompare in the retrieval of above-cloud aerosol optical depth?
A case study-based assessment, Geophys. Res. Lett., 41, 186–192,
https://doi.org/10.1002/2013GL058405, 2013.
Kato, S., Hinkelman, L. M., and Cheng, A.: Estimate of satellite-derived
cloud optical thickness and effective radius errors and their effect on
computed domain-averaged irradiances, J. Geophys. Res.-Atmos., 111,
D17201, https://doi.org/10.1029/2005JD006668, 2006.
Kawai, H. and Teixeira, J.: Probability Density Functions of Liquid Water
Path and Total Water Content of Marine Boundary Layer Clouds: Implications
for Cloud Parameterization., J. Climate, 25, 2162–2177,
https://doi.org/10.1175/JCLI-D-11-00117.1, 2011.
Lenoble, J., Herman, M., Deuzé, J.L., Lafrance, B., Santer, R.,
and Tanré, D.: A successive order of scattering code for solving the
vector equation of transfer in the earth's atmosphere with aerosols, J. Quant. Spectrosc. Ra., 107,
479–507,
https://doi.org/10.1016/j.jqsrt.2007.03.010, 2007.
Levis, A., Schechner, Y. Y., Aides, A., and Davis, A. B.: Airborne
Three-Dimensional Cloud Tomography, in: 2015 IEEE International Conference
on Computer Vision (ICCV), Presented at the 2015 IEEE International
Conference on Computer Vision (ICCV), 3379–3387,
https://doi.org/10.1109/ICCV.2015.386, 2015.
Levis, A., Schechner, Y. Y., and Davis, A. B.: Multiple-Scattering
Microphysics Tomography, IEEE, 5797–5806,
https://doi.org/10.1109/CVPR.2017.614, 2017.
Loeb, N. G. and Coakley, J. A.: Inference of Marine Stratus Cloud Optical
Depths from Satellite Measurements: Does 1-D Theory Apply?, J. Climate, 11,
215–233, https://doi.org/10.1175/1520-0442(1998)011<0215:IOMSCO>2.0.CO;2, 1998.
Loeb, N. G. and Davies, R.: Observational evidence of plane parallel model
biases: Apparent dependence of cloud optical depth on solar zenith angle, J. Geophys. Res.-Atmos., 101, 1621–1634, https://doi.org/10.1029/95JD03298, 1996.
Magaritz-Ronen L., Khain A., and Pinsky M.: About the horizontal
variability of effective radius in stratocumulus clouds, J. Geophys. Res.-Atmos., 121, 9640–9660, https://doi.org/10.1002/2016JD024977, 2016.
Marbach, T., Riedi, J., Lacan, A., and Schlüssel, P.: The 3MI mission:
multi-viewing-channel-polarisation imager of the EUMETSAT polar system:
second generation (EPS-SG) dedicated to aerosol and cloud monitoring, Proc.
SPIE 9613, Polarization Science and Remote Sensing VII, 961310,
https://doi.org/10.1117/12.2186978, 2015.
Marshak, A. and Davis, A. (Eds.): 3-D Radiative Transfer in Cloudy
Atmospheres, Physics of Earth and Space Environments, Springer-Verlag,
Berlin/Heidelberg, 2005.
Marshak, A., Platnick, S., Várnai, T., Wen, G., and Cahalan, R. F.:
Impact of three-dimensional radiative effects on satellite retrievals of
cloud droplet sizes, J. Geophys. Res.-Atmos., 111, D09207,
https://doi.org/10.1029/2005JD006686, 2006.
Martin, W. and Hasekamp, O. P.: A demonstration of adjoint methods for
multi-dimensional remote sensing of the atmosphere and surface, J. Quant. Spectrosc. Ra., 204,
215–231,
https://doi.org/10.1016/j.jqsrt.2017.09.031, 2018.
Martin, W., Cairns, B., and Bal, G.: Adjoint methods for adjusting
three-dimensional atmosphere and surface properties to fit
multi-angle/multi-pixel polarimetric measurements, J. Quant. Spectrosc. Ra., 144, 68–85, https://doi.org/10.1016/j.jqsrt.2014.03.030, 2014.
Meyer, K., Platnick, S., and Zhang, Z.: Simultaneously inferring
above-cloud absorbing aerosol optical thickness and underlying liquid phase
cloud optical and microphysical properties using MODIS, J. Geophys. Res.-Atmos., 2015, JD023128, https://doi.org/10.1002/2015JD023128, 2015.
Nakajima, T. and King, M. D.: Determination of the Optical Thickness and
Effective Particle Radius of Clouds from Reflected Solar Radiation
Measurements. Part I: Theory, J. Atmos. Sci., 47, 1878–1893,
https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2, 1990.
Parol, F., Buriez, J. C., Vanbauce, C., Riedi, J., C.-Labonnote, L.,
Doutriaux-Boucher, M., Vesperini, M., Sèze, G., Couvert, P., Viollier,
M., and Bréon, F. M.: Review of capabilities of multi-angle and
polarization cloud measurements from POLDER. Adv. Space Res., Climate Change
Processes in the Stratosphere, Earth-Atmosphere-Ocean Systems, and
Oceanographic Processes from Satellite Data 33, 1080–1088.
https://doi.org/10.1016/S0273-1177(03)00734-8, 2004.
Peers, F., Waquet, F., Cornet, C., Dubuisson, P., Ducos, F., Goloub, P., Szczap, F., Tanré, D., and Thieuleux, F.: Absorption of
aerosols above clouds from POLDER/PARASOL measurements and estimation of their direct radiative effect,
Atmos. Chem. Phys., 15, 4179–4196, https://doi.org/10.5194/acp-15-4179-2015, 2015.
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riedi,
J. C., and Frey, R. A.: The MODIS cloud products: algorithms and examples
from Terra, IEEE T. Geosci. Remote, 41, 459–473,
https://doi.org/10.1109/TGRS.2002.808301, 2003.
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and
practice, World Scientific Publishing Co. Ltd, London, UK, p. 238, 2000.
Stap, F. A., Hasekamp, O. P., Emde, C., and Röckmann, T.: Influence of
3-D effects on 1-D aerosol retrievals in synthetic, partially clouded scenes, J. Quant. Spectrosc. Ra., 170,
54–68,
https://doi.org/10.1016/j.jqsrt.2015.10.008, 2016a.
Stap, F. A., Hasekamp, O. P., Emde, C., and Röckmann, T.: Multiangle
photopolarimetric aerosol retrievals in the vicinity of clouds: Synthetic
study based on a large eddy simulation, J. Geophys. Res.-Atmos., 121,
12914–12935, https://doi.org/10.1002/2016JD024787, 2016b.
Szczap, F., Isaka, H., Saute, M., Guillemet, B., and Ioltukhovski, A.:
Effective radiative properties of bounded cascade nonabsorbing clouds:
Definition of the equivalent homogeneous cloud approximation, J. Geophys. Res.-Atmos., 105, 20617–20633, https://doi.org/10.1029/2000JD900146, 2000a.
Szczap, F., Isaka, H., Saute, M., Guillemet, B., and Ioltukhovski, A.:
Effective radiative properties of bounded cascade absorbing clouds:
Definition of an effective single-scattering albedo, J. Geophys. Res.-Atmos., 105, 20635–20648, https://doi.org/10.1029/2000JD900145, 2000b.
Szczap, F., Gour, Y., Fauchez, T., Cornet, C., Faure, T., Jourdan, O., Penide, G., and Dubuisson, P.: A flexible three-dimensional
stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and the Fourier
transform framework, Geosci. Model Dev., 7, 1779–1801, https://doi.org/10.5194/gmd-7-1779-2014, 2014.
Torres, O., Jethva, H., and Bhartia, P. K.: Retrieval of Aerosol Optical
Depth above Clouds from OMI Observations: Sensitivity Analysis and Case
Studies, J. Atmos. Sci., 69, 1037–1053,
https://doi.org/10.1175/JAS-D-11-0130.1, 2011.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J.
Atmos. Sci., 34, 1149–1152,
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Varnai, T.: Influence of Three-Dimensional Radiative Effects on the
Spatial Distribution of Shortwave Cloud Reflection, J. Atmos. Sci., 57,
216–229, https://doi.org/10.1175/1520-0469(2000)057<0216:IOTDRE>2.0.CO;2, 2000.
Varnai, T. and Davies, R.: Effects of Cloud Heterogeneities on Shortwave
Radiation: Comparison of Cloud-Top Variability and Internal Heterogeneity, J. Atmos. Sci., 56,
4206–4224,
https://doi.org/10.1175/1520-0469(1999)056<4206:EOCHOS>2.0.CO;2, 1999.
Varnai, T. and Marshak, A.: Observations of Three-Dimensional Radiative
Effects that Influence MODIS Cloud Optical Thickness Retrievals, J. Atmos. Sci., 59,
1607–1618,
https://doi.org/10.1175/1520-0469(2002)059<1607:OOTDRE>2.0.CO;2, 2002.
Waquet, F., Riedi, J., Labonnote, L.C., Goloub, P., Cairns, B., Deuzé,
J.-L., and Tanré, D.: Aerosol Remote Sensing over Clouds Using A-Train
Observations, J. Atmos. Sci., 66, 2468–2480,
https://doi.org/10.1175/2009JAS3026.1, 2009.
Waquet, F., Cornet, C., Deuzé, J.-L., Dubovik, O., Ducos, F., Goloub, P., Herman, M., Lapyonok, T., Labonnote, L. C., Riedi, J., Tanré, D.,
Thieuleux, F., and Vanbauce, C.: Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization
measurements, Atmos. Meas. Tech., 6, 991–1016, https://doi.org/10.5194/amt-6-991-2013, 2013a.
Waquet, F., Peers, F., Ducos, F., Goloub, P., Platnick, S., Riedi, J.,
Tanré, D., and Thieuleux, F.: Global analysis of aerosol properties
above clouds, Geophys. Res. Lett., 40, 5809–5814,
https://doi.org/10.1002/2013GL057482, 2013b.
Wilcox, E. M.: Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol, Atmos. Chem. Phys.,
10, 11769–11777, https://doi.org/10.5194/acp-10-11769-2010, 2010.
Young, S. A. and Vaughan, M. A.: The Retrieval of Profiles of Particulate
Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite
Observations (CALIPSO) Data: Algorithm Description, J. Atmos. Ocean.,
Tech., 26, 1105–1119, https://doi.org/10.1175/2008JTECHA1221.1, 2009.
Zeng, S., Parol, F., Riedi, J., Cornet, C., and Thieuleux, F.: Examination
of POLDER/PARASOL and MODIS/Aqua Cloud Fractions and Properties
Representativeness, J. Climate, 24, 4435–4450,
https://doi.org/10.1175/2011JCLI3857.1, 2011.
Zeng, S., Cornet, C., Parol, F., Riedi, J., and Thieuleux, F.: A better understanding of cloud optical thickness derived
from the passive sensors MODIS/AQUA and POLDER/PARASOL in the A-Train constellation, Atmos. Chem. Phys., 12, 11245–11259, https://doi.org/10.5194/acp-12-11245-2012, 2012.
Zeng, S., Riedi, J., Parol, F., Cornet, C., and Thieuleux, F.: An assessment
of cloud top thermodynamic phase products obtained from A-Train passive and
active sensors, Atmos. Meas. Tech. Discuss., 6, 8371–8411,
https://doi.org/10.5194/amtd-6-8371-2013, 2013.
Zhang, Z., Ackerman, A. S., Feingold, G., Platnick, S., Pincus, R., and Xue, H.: Effects of cloud horizontal inhomogeneity and drizzle on remote
sensing of cloud droplet effective radius: Case studies based on large-eddy
simulations, J. Geophys. Res.-Atmos., 117, D19208,
https://doi.org/10.1029/2012JD017655, 2012.
Zhang, Z., Meyer, K., Yu, H., Platnick, S., Colarco, P., Liu, Z., and Oreopoulos, L.: Shortwave direct radiative effects
of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations,
Atmos. Chem. Phys., 16, 2877–2900, https://doi.org/10.5194/acp-16-2877-2016, 2016a.
Zhang, Z., Werner, F., Cho, H.-M., Wind, G., Platnick, S., Ackerman, A. S.,
Di Girolamo, L., Marshak, A., and Meyer, K.: A framework based on 2-D
Taylor expansion for quantifying the impacts of subpixel reflectance
variance and covariance on cloud optical thickness and effective radius
retrievals based on the bispectral method, J. Geophys. Res.-Atmos., 121,
2016JD024837, https://doi.org/10.1002/2016JD024837, 2016b.
Zhou, Y., Sun, X., Zhang, R., Zhang, C., Li, H., Zhou, J., and Li, S.:
Influences of cloud heterogeneity on cirrus optical properties retrieved
from the visible and near-infrared channels of MODIS/SEVIRI for flat and
optically thick cirrus clouds, J. Quant. Spectrosc. Ra., 187,
232–246, https://doi.org/10.1016/j.jqsrt.2016.09.020, 2017.
Zinner, T. and Mayer, B.: Remote sensing of stratocumulus clouds:
Uncertainties and biases due to inhomogeneity, J. Geophys. Res.-Atmos.,
111, D14209, https://doi.org/10.1029/2005JD006955, 2006.