Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 6 | Copyright

Special issue: Atmospheric emissions from oil sands development and their...

Atmos. Meas. Tech., 11, 3829-3849, 2018
https://doi.org/10.5194/amt-11-3829-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 28 Jun 2018

Research article | 28 Jun 2018

Airborne lidar measurements of aerosol and ozone above the Canadian oil sands region

Monika Aggarwal1, James Whiteway1, Jeffrey Seabrook1, Lawrence Gray1, Kevin Strawbridge2, Peter Liu2, Jason O'Brien2, Shao-Meng Li2, and Robert McLaren3 Monika Aggarwal et al.
  • 1York University, Centre for Research in Earth and Space Science, Toronto, ON, M3J 1P3, Canada
  • 2Environment and Climate Change Canada, Air Quality Processes Research Section, Toronto, ON, M3H 5T4, Canada
  • 3York University, Centre for Atmospheric Chemistry, Toronto, ON, M3J 1P3, Canada

Abstract. Aircraft-based lidar measurements of atmospheric aerosol and ozone were conducted to study air pollution from the oil sands extraction industry in northern Alberta. Significant amounts of aerosol were observed in the polluted air within the surface boundary layer, up to heights of 1 to 1.6km above ground. The ozone mixing ratio measured in the polluted boundary layer air directly above the oil sands industry was equal to or less than the background ozone mixing ratio. On one of the flights, the lidar measurements detected a layer of forest fire smoke above the surface boundary layer in which the ozone mixing ratio was substantially greater than the background. Measurements of the linear depolarization ratio in the aerosol backscatter were obtained with a ground-based lidar and this aided in the discrimination between the separate emission sources from industry and forest fires. The retrieval of ozone abundance from the lidar measurements required the development of a method to account for the interference from the substantial aerosol content within the polluted boundary layer.

Publications Copernicus
Special issue
Download
Short summary
Aircraft-based laser remote sensing measurements of atmospheric aerosol and ozone were conducted to study air pollution from the oil sands extraction industry in northern Alberta. The ozone mixing ratio measured in the polluted boundary layer air was equal to or less than the background ozone mixing ratio. The lidar measurements detected a layer of forest fire smoke above the surface boundary layer in which the measured ozone mixing ratio was substantially greater than the background amount.
Aircraft-based laser remote sensing measurements of atmospheric aerosol and ozone were conducted...
Citation
Share