Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 6 | Copyright
Atmos. Meas. Tech., 11, 3851-3860, 2018
https://doi.org/10.5194/amt-11-3851-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Jun 2018

Research article | 29 Jun 2018

Characteristics of vertical velocities estimated from drop size and fall velocity spectra of a Parsivel disdrometer

Dong-Kyun Kim and Chang-Keun Song Dong-Kyun Kim and Chang-Keun Song
  • School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Abstract. Vertical air velocities were estimated from drop size and fall velocity spectra observed by Parsivel disdrometers during intensive field observations from 13 June to 3 August 2016 around Mt. Jiri (1915ma.s.l.) in the southern Korean Peninsula. Rainfall and wind velocity data measured by Parsivel disdrometers and ultrasonic anemometers, respectively, were analyzed for an orographic rainfall event associated with a stationary front over Mt. Jiri on 1 July 2016. In this study, a new technique was developed to estimate vertical air velocities from drop size and fall velocity spectra measured by the Parsivel disdrometers and investigate characteristics of up-/downdrafts and related microphysics on the windward and leeward sides of the mountain.

To validate results from this technique, vertical air velocities between the Parsivel disdrometers and anemometers were compared at different locations and were shown in quite good agreement with each other. It was shown that upward motion was relatively more dominant on the windward side and even during periods of heavy rainfall. In contrast, downward motion was more dominant on the leeward side during nearly the same periods of heavy rainfall. Occurrences of upward and downward motion were digitized as percentage values as they are divided by a total count of occurrences during the entire period. On the windward (leeward) side, the percentages of upward (downward) motion were much larger than those of downward (upward) motion. The mean rainfall intensity on the leeward side was stronger than on the windward side, suggesting that most of the rainfall on the leeward side was relatively more affected by the downward motion. With the estimated vertical air velocities, histogram characteristics of rainfall parameters were also examined between the windward and leeward sides.

Publications Copernicus
Download
Short summary
A new technique to estimate vertical velocities from Parsivel-measured drop and velocity spectra is developed. The estimated vertical velocities (w) were compared with w components of winds measured from the anemometer at the same site. They showed good agreement with each other, suggesting that this technique is reliable and applicable to rainfall studies. With these w values, rainfall characteristics related to up-/downdraft were investigated on the windward and leeward sides of a mountain.
A new technique to estimate vertical velocities from Parsivel-measured drop and velocity spectra...
Citation
Share