Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • IPP value: 3.29 IPP 3.29
  • SJR value: 1.869 SJR 1.869
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
  • h5-index value: 47 h5-index 47
Volume 11, issue 7 | Copyright
Atmos. Meas. Tech., 11, 4217-4237, 2018
https://doi.org/10.5194/amt-11-4217-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jul 2018

Research article | 18 Jul 2018

All-sky information content analysis for novel passive microwave instruments in the range from 23.8 to 874.4 GHz

Verena Grützun1, Stefan A. Buehler1, Lukas Kluft2, Jana Mendrok3, Manfred Brath1, and Patrick Eriksson3 Verena Grützun et al.
  • 1Meteorologisches Institut, Fachbereich Geowissenschaften, Centrum für Erdsystem und Nachhaltigkeitsforschung (CEN), Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
  • 2Max-Planck-Institut für Meteorologie, Bundesstraße 53, 20146 Hamburg, Germany
  • 3Department of Space, Earth and Environment, Chalmers University of Technology, 41296 Gothenburg, Sweden

Abstract. We perform an all-sky information content analysis for channels in the millimetre and sub-millimetre wavelength with 24 channels in the region from 23.8 to 874.4GHz. The employed set of channels corresponds to the instruments ISMAR and MARSS, which are available on the British FAAM research aircraft, and it is complemented by two precipitation channels at low frequencies from Deimos. The channels also cover ICI, which will be part of the MetOp-SG mission. We use simulated atmospheres from the ICON model as basis for the study and quantify the information content with the reduction of degrees of freedom (ΔDOF). The required Jacobians are calculated with the radiative transfer model ARTS. Specifically we focus on the dependence of the information content on the atmospheric composition. In general we find a high information content for the frozen hydrometeors, which mainly comes from the higher frequency channels beyond 183.31GHz (on average 3.10 for cloud ice and 2.57 for snow). Considerable information about the microphysical properties, especially for cloud ice, can be gained. The information content about the liquid hydrometeors comes from the lower frequency channels. It is 1.69 for liquid cloud water and 1.08 for rain using the full set of channels. The Jacobians for a specific cloud hydrometeor strongly depend on the atmospheric composition. Especially for the liquid hydrometeors the Jacobians even change sign in some cases. However, the information content is robust across different atmospheric compositions. For liquid hydrometeors the information content decreases in the presence of any frozen hydrometeor, for the frozen hydrometeors it decreases slightly in the presence of the respective other frozen hydrometeor. Due to the lack of channels below 183GHz liquid hydrometeors are hardly seen by ICI. However, the overall results with regard to the frozen hydrometeors also hold for the ICI sensor. This points to ICI's great ability to observe ice clouds from space on a global scale with a good spatial coverage in unprecedented detail.

Publications Copernicus
Download
Short summary
The global observation of ice clouds is crucial because they are important factors in the climate system but still are amongst the greatest uncertainties for estimating the Earth's energy budget in a changing climate. However, reliable global long-term measurements are scarce. Using atmospheric model data from the ICON model in combination with the radiative transfer simulator ARTS we explore the potential of passive millimeter and sub-millimeter wavelength measurements to fill that gap.
The global observation of ice clouds is crucial because they are important factors in the...
Citation
Share