Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 7
Atmos. Meas. Tech., 11, 4273–4289, 2018
https://doi.org/10.5194/amt-11-4273-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 4273–4289, 2018
https://doi.org/10.5194/amt-11-4273-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Jul 2018

Research article | 20 Jul 2018

Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals

Daniel P. Grosvenor et al.

Related authors

How does the UKESM1 climate model produce its cloud-aerosol forcing in the North Atlantic?
Daniel P. Grosvenor and Kenneth S. Carslaw
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-502,https://doi.org/10.5194/acp-2020-502, 2020
Preprint under review for ACP
Short summary
Untangling causality in midlatitude aerosol–cloud adjustments
Daniel T. McCoy, Paul Field, Hamish Gordon, Gregory S. Elsaesser, and Daniel P. Grosvenor
Atmos. Chem. Phys., 20, 4085–4103, https://doi.org/10.5194/acp-20-4085-2020,https://doi.org/10.5194/acp-20-4085-2020, 2020
Short summary
Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, N. Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmieri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-357,https://doi.org/10.5194/gmd-2019-357, 2020
Preprint under review for GMD
Short summary
Improving aerosol activation in the double-moment Unified Model with CLARIFY measurements
Hamish Gordon, Paul R. Field, Steven J. Abel, Paul Barrett, Keith Bower, Ian Crawford, Zhiqiang Cui, Daniel P. Grosvenor, Adrian A. Hill, Jonathan Taylor, Jonathan Wilkinson, Huihui Wu, and Ken S. Carslaw
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-68,https://doi.org/10.5194/acp-2020-68, 2020
Revised manuscript under review for ACP
Short summary
Large simulated radiative effects of smoke in the south-east Atlantic
Hamish Gordon, Paul R. Field, Steven J. Abel, Mohit Dalvi, Daniel P. Grosvenor, Adrian A. Hill, Ben T. Johnson, Annette K. Miltenberger, Masaru Yoshioka, and Ken S. Carslaw
Atmos. Chem. Phys., 18, 15261–15289, https://doi.org/10.5194/acp-18-15261-2018,https://doi.org/10.5194/acp-18-15261-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm
Daniel J. Miller, Michal Segal-Rozenhaimer, Kirk Knobelspiesse, Jens Redemann, Brian Cairns, Mikhail Alexandrov, Bastiaan van Diedenhoven, and Andrzej Wasilewski
Atmos. Meas. Tech., 13, 3447–3470, https://doi.org/10.5194/amt-13-3447-2020,https://doi.org/10.5194/amt-13-3447-2020, 2020
Short summary
A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020,https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Using Two-Stream Theory to Capture Fluctuations of Satellite-Perceived TOA SW Radiances Reflected from Clouds over Ocean
Florian Tornow, Carlos Domenech, Howard W. Barker, René Preusker, and Jürgen Fischer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-149,https://doi.org/10.5194/amt-2020-149, 2020
Revised manuscript accepted for AMT
Short summary
SegCloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation
Wanyi Xie, Dong Liu, Ming Yang, Shaoqing Chen, Benge Wang, Zhenzhu Wang, Yingwei Xia, Yong Liu, Yiren Wang, and Chaofang Zhang
Atmos. Meas. Tech., 13, 1953–1961, https://doi.org/10.5194/amt-13-1953-2020,https://doi.org/10.5194/amt-13-1953-2020, 2020
Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements
Brent A. McBride, J. Vanderlei Martins, Henrique M. J. Barbosa, William Birmingham, and Lorraine A. Remer
Atmos. Meas. Tech., 13, 1777–1796, https://doi.org/10.5194/amt-13-1777-2020,https://doi.org/10.5194/amt-13-1777-2020, 2020
Short summary

Cited articles

Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, https://doi.org/10.1038/nature03174, 2004. a, b
Adebiyi, A., Zuidema, P., and Abel, S.: The convolution of dynamics and moisture with the presence of shortwave absorbing aerosols over the southeast Atlantic, J. Climate, 28, 1997–2024, https://doi.org/10.1175/JCLI-D-14-00352.1, 2015. a
Ahmad, I., Mielonen, T., Grosvenor, D. P., Portin, H. J., Arola, A., Mikkonen, S., Kühn, T., Leskinen, A., Joutsensaari, J., Komppula, M., Lehtinen, K. E. J., Laaksonen, A., and Romakkaniemi, S.: Long-term measurements of cloud droplet concentrations and aerosol–cloud interactions in continental boundary layer clouds, Tellus B, 65, 20138, https://doi.org/10.3402/tellusb.v65i0.20138, 2013. a
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, 1989. a
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006JD007547, 2007. a, b, c
Publications Copernicus
Download
Short summary
We provide a parameterized correction to the retrieval of cloud effective radius from satellite instruments to account for the assumption that the retrieved value is representative of that at cloud top, whereas in reality it is representative of that lower down. The error leads to errors (which we quantify) in the retrieved cloud droplet concentrations of up to 38 % for stratocumulus regions and also to liquid water path errors, both of which can be corrected using our parameterizations.
We provide a parameterized correction to the retrieval of cloud effective radius from satellite...
Citation