Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 7
Atmos. Meas. Tech., 11, 4345–4360, 2018
https://doi.org/10.5194/amt-11-4345-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 4345–4360, 2018
https://doi.org/10.5194/amt-11-4345-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 23 Jul 2018

Research article | 23 Jul 2018

Exploring femtosecond laser ablation in single-particle aerosol mass spectrometry

Ramakrishna Ramisetty et al.

Viewed

Total article views: 1,334 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
871 421 42 1,334 142 27 42
  • HTML: 871
  • PDF: 421
  • XML: 42
  • Total: 1,334
  • Supplement: 142
  • BibTeX: 27
  • EndNote: 42
Views and downloads (calculated since 10 Oct 2017)
Cumulative views and downloads (calculated since 10 Oct 2017)

Viewed (geographical distribution)

Total article views: 1,240 (including HTML, PDF, and XML) Thereof 1,221 with geography defined and 19 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 03 Jun 2020
Publications Copernicus
Download
Short summary
In this study we coupled a laser ablation aerosol time-of-flight (LAAPTOF) single-particle mass spectrometer, originally equipped with an excimer laser, to a femtosecond laser. The objective was to assess the influence of the higher laser power density of the femtosecond laser on ablation–ionization of atmospheric particles, ion signal, and ultimately quantitative abilities of the single-particle mass spectrometer.
In this study we coupled a laser ablation aerosol time-of-flight (LAAPTOF) single-particle mass...
Citation