Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 8
Atmos. Meas. Tech., 11, 4797–4807, 2018
https://doi.org/10.5194/amt-11-4797-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 4797–4807, 2018
https://doi.org/10.5194/amt-11-4797-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Aug 2018

Research article | 16 Aug 2018

Portable ozone calibration source independent of changes in temperature, pressure and humidity for research and regulatory applications

John W. Birks et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Andrew Turnipseed on behalf of the Authors (02 Jul 2018)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (18 Jul 2018) by Andreas Hofzumahaus
AR by Andrew Turnipseed on behalf of the Authors (23 Jul 2018)  Author's response    Manuscript
ED: Publish as is (30 Jul 2018) by Andreas Hofzumahaus
Publications Copernicus
Download
Short summary
A highly portable ozone calibration source based on the photolysis of oxygen is described and evaluated. The ozone mixing ratio produced is independent of both pressure and temperature, and humidity effects are small and correctable. The resulting O3 calibrator has a response time < 20 s, a precision of 0.4 %, and can serve as a U.S. EPA level 4 transfer standard for the calibration of ozone analyzers.
A highly portable ozone calibration source based on the photolysis of oxygen is described and...
Citation