Articles | Volume 11, issue 9
https://doi.org/10.5194/amt-11-5223-2018
https://doi.org/10.5194/amt-11-5223-2018
Research article
 | 
18 Sep 2018
Research article |  | 18 Sep 2018

Enhancing the consistency of spaceborne and ground-based radar comparisons by using beam blockage fraction as a quality filter

Irene Crisologo, Robert A. Warren, Kai Mühlbauer, and Maik Heistermann

Related authors

Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms
Irene Crisologo and Maik Heistermann
Atmos. Meas. Tech., 13, 645–659, https://doi.org/10.5194/amt-13-645-2020,https://doi.org/10.5194/amt-13-645-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Global evaluation of fast radiative transfer model coefficients for early meteorological satellite sensors
Bruna Barbosa Silveira, Emma Catherine Turner, and Jérôme Vidot
Atmos. Meas. Tech., 17, 1279–1296, https://doi.org/10.5194/amt-17-1279-2024,https://doi.org/10.5194/amt-17-1279-2024, 2024
Short summary
GPROF V7 and beyond: assessment of current and potential future versions of the GPROF passive microwave precipitation retrievals against ground radar measurements over the continental US and the Pacific Ocean
Simon Pfreundschuh, Clément Guilloteau, Paula J. Brown, Christian D. Kummerow, and Patrick Eriksson
Atmos. Meas. Tech., 17, 515–538, https://doi.org/10.5194/amt-17-515-2024,https://doi.org/10.5194/amt-17-515-2024, 2024
Short summary
Assessing sampling and retrieval errors of GPROF precipitation estimates over the Netherlands
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259, https://doi.org/10.5194/amt-17-247-2024,https://doi.org/10.5194/amt-17-247-2024, 2024
Short summary
Comparisons and quality control of wind observations in a mountainous city using wind profile radar and the Aeolus satellite
Hua Lu, Min Xie, Wei Zhao, Bojun Liu, Tijian Wang, and Bingliang Zhuang
Atmos. Meas. Tech., 17, 167–179, https://doi.org/10.5194/amt-17-167-2024,https://doi.org/10.5194/amt-17-167-2024, 2024
Short summary
On the use of routine airborne observations for evaluation and monitoring of satellite observations of thermodynamic profiles
Timothy J. Wagner, Thomas August, Tim Hultberg, and Ralph A. Petersen
Atmos. Meas. Tech., 17, 1–14, https://doi.org/10.5194/amt-17-1-2024,https://doi.org/10.5194/amt-17-1-2024, 2024
Short summary

Cited articles

Abon, C. C., Kneis, D., Crisologo, I., Bronstert, A., David, C. P. C., and Heistermann, M.: Evaluating the potential of radar-based rainfall estimates for streamflow and flood simulations in the Philippines, Geomat. Nat. Haz. Risk, 7, 1390–1405, https://doi.org/10.1080/19475705.2015.1058862, 2016. a
Amitai, E., Llort, X., and Sempere-Torres, D.: Comparison of TRMM radar rainfall estimates with NOAA next-generation QPE, J. Meteorol. Soc. Jpn., 87, 109–118, https://doi.org/10.2151/jmsj.87A.109, 2009. a
Anagnostou, E. N., Morales, C. A., and Dinku, T.: The use of TRMM precipitation radar observations in determining ground radar calibration biases, J. Atmos. Ocean Tech., 18, 616–628, 2001. a, b, c, d
Austin, P. M.: Relation between Measured Radar Reflectivity and Surface Rainfall, Mon. Weather Rev., 115, 1053–1070, https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2, 1987. a
Baldini, L., Chandrasekar, V., and Moisseev, D.: Microwave radar signatures of precipitation from S band to Ka band: application to GPM mission, Eur. J. Remote Sens., 45, 75–88, https://doi.org/10.5721/EuJRS20124508, 2012. a
Download
Short summary
The calibration of ground-based weather radar (GR) can be improved a posteriori by comparing observed GR reflectivity to well-established spaceborne radar platforms (SR), such as TRMM or GPM. Our study shows that the consistency between GR and SR reflectivity measurements can be enhanced by considering the quality of GR data from areas where signals may have been blocked due to the surrounding terrain, and provides an open-source toolset to carry out corresponding analyses.