Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 9
Atmos. Meas. Tech., 11, 5351-5361, 2018
https://doi.org/10.5194/amt-11-5351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 5351-5361, 2018
https://doi.org/10.5194/amt-11-5351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Sep 2018

Research article | 25 Sep 2018

Cloud classification of ground-based infrared images combining manifold and texture features

Qixiang Luo et al.
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A high-level cloud detection method utilizing the GOSAT TANSO-FTS water vapor saturated band
Nawo Eguchi and Yukio Yoshida
Atmos. Meas. Tech., 12, 389-403, https://doi.org/10.5194/amt-12-389-2019,https://doi.org/10.5194/amt-12-389-2019, 2019
Short summary
CALIPSO lidar calibration at 1064 nm: version 4 algorithm
Mark Vaughan, Anne Garnier, Damien Josset, Melody Avery, Kam-Pui Lee, Zhaoyan Liu, William Hunt, Jacques Pelon, Yongxiang Hu, Sharon Burton, Johnathan Hair, Jason L. Tackett, Brian Getzewich, Jayanta Kar, and Sharon Rodier
Atmos. Meas. Tech., 12, 51-82, https://doi.org/10.5194/amt-12-51-2019,https://doi.org/10.5194/amt-12-51-2019, 2019
Short summary
Boundary-layer water vapor profiling using differential absorption radar
Richard J. Roy, Matthew Lebsock, Luis Millán, Robert Dengler, Raquel Rodriguez Monje, Jose V. Siles, and Ken B. Cooper
Atmos. Meas. Tech., 11, 6511-6523, https://doi.org/10.5194/amt-11-6511-2018,https://doi.org/10.5194/amt-11-6511-2018, 2018
Short summary
CALIPSO lidar calibration at 532 nm: version 4 daytime algorithm
Brian J. Getzewich, Mark A. Vaughan, William H. Hunt, Melody A. Avery, Kathleen A. Powell, Jason L. Tackett, David M. Winker, Jayanta Kar, Kam-Pui Lee, and Travis D. Toth
Atmos. Meas. Tech., 11, 6309-6326, https://doi.org/10.5194/amt-11-6309-2018,https://doi.org/10.5194/amt-11-6309-2018, 2018
Short summary
The MIPAS/Envisat climatology (2002–2012) of polar stratospheric cloud volume density profiles
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901-5923, https://doi.org/10.5194/amt-11-5901-2018,https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Cited articles  
Arsigny, V., Fillard, P., Pennec, X., and Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices, Siam J. Matrix Anal. A., 29, 328–347, https://doi.org/10.1137/050637996, 2008. 
Bensmail, H. and Celeux, G.: Regularized Gaussian discriminant analysis through eigenvalue decomposition, J. Am. Stat. Assoc., 91, 1743–1748, https://doi.org/10.1080/01621459.1996.10476746, 1996. 
Buch, K. A., Sun Chen-Hui, and Thorne L. R.: Cloud classification using whole-sky imager data, in: Proceedings of the 5th Atmospheric Radiation Measurement Science Team Meeting, San Diego, CA, USA, 27–31 March, 1995. 
Calbó, J. and Sabburg, J.: Feature extraction from whole-sky ground-based images for cloud-type recognition, J. Atmos. Ocean. Tech., 25, 3–14, https://doi.org/10.1175/2007JTECHA959.1, 2008. 
Cazorla, A., Olmo, F. J., and Aladosarboledas, L.: Development of a sky imager for cloud cover assessment, J. Opt. Soc. Am. A., 25, 29–39, https://doi.org/10.1364/JOSAA.25.000029, 2008. 
Publications Copernicus
Download
Short summary
In this paper, a novel cloud classification method is proposed to group images into five cloud types based on manifold and texture features. The proposed method is comprised of three stages: data pre-processing, feature extraction and classification. Compared to the recent cloud type recognition methods, the experimental results illustrate that the proposed method acquires a higher recognition rate with an increase of 2%–10% on the ground-based infrared datasets.
In this paper, a novel cloud classification method is proposed to group images into five cloud...
Citation
Share