Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 9
Atmos. Meas. Tech., 11, 5351–5361, 2018
https://doi.org/10.5194/amt-11-5351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 5351–5361, 2018
https://doi.org/10.5194/amt-11-5351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Sep 2018

Research article | 25 Sep 2018

Cloud classification of ground-based infrared images combining manifold and texture features

Qixiang Luo et al.
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Footprint-scale cloud type mixtures and their impacts on Atmospheric Infrared Sounder cloud property retrievals
Alexandre Guillaume, Brian H. Kahn, Eric J. Fetzer, Qing Yue, Gerald J. Manipon, Brian D. Wilson, and Hook Hua
Atmos. Meas. Tech., 12, 4361–4377, https://doi.org/10.5194/amt-12-4361-2019,https://doi.org/10.5194/amt-12-4361-2019, 2019
Short summary
Estimation of liquid water path below the melting layer in stratiform precipitation systems using radar measurements during MC3E
Jingjing Tian, Xiquan Dong, Baike Xi, Christopher R. Williams, and Peng Wu
Atmos. Meas. Tech., 12, 3743–3759, https://doi.org/10.5194/amt-12-3743-2019,https://doi.org/10.5194/amt-12-3743-2019, 2019
Short summary
Correlated observation error models for assimilating all-sky infrared radiances
Alan J. Geer
Atmos. Meas. Tech., 12, 3629–3657, https://doi.org/10.5194/amt-12-3629-2019,https://doi.org/10.5194/amt-12-3629-2019, 2019
Short summary
Cloud identification and classification from high spectral resolution data in the far infrared and mid-infrared
Tiziano Maestri, William Cossich, and Iacopo Sbrolli
Atmos. Meas. Tech., 12, 3521–3540, https://doi.org/10.5194/amt-12-3521-2019,https://doi.org/10.5194/amt-12-3521-2019, 2019
Short summary
Investigating the liquid water path over the tropical Atlantic with synergistic airborne measurements
Marek Jacob, Felix Ament, Manuel Gutleben, Heike Konow, Mario Mech, Martin Wirth, and Susanne Crewell
Atmos. Meas. Tech., 12, 3237–3254, https://doi.org/10.5194/amt-12-3237-2019,https://doi.org/10.5194/amt-12-3237-2019, 2019
Short summary
Cited articles  
Arsigny, V., Fillard, P., Pennec, X., and Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices, Siam J. Matrix Anal. A., 29, 328–347, https://doi.org/10.1137/050637996, 2008. 
Bensmail, H. and Celeux, G.: Regularized Gaussian discriminant analysis through eigenvalue decomposition, J. Am. Stat. Assoc., 91, 1743–1748, https://doi.org/10.1080/01621459.1996.10476746, 1996. 
Buch, K. A., Sun Chen-Hui, and Thorne L. R.: Cloud classification using whole-sky imager data, in: Proceedings of the 5th Atmospheric Radiation Measurement Science Team Meeting, San Diego, CA, USA, 27–31 March, 1995. 
Calbó, J. and Sabburg, J.: Feature extraction from whole-sky ground-based images for cloud-type recognition, J. Atmos. Ocean. Tech., 25, 3–14, https://doi.org/10.1175/2007JTECHA959.1, 2008. 
Cazorla, A., Olmo, F. J., and Aladosarboledas, L.: Development of a sky imager for cloud cover assessment, J. Opt. Soc. Am. A., 25, 29–39, https://doi.org/10.1364/JOSAA.25.000029, 2008. 
Publications Copernicus
Download
Short summary
In this paper, a novel cloud classification method is proposed to group images into five cloud types based on manifold and texture features. The proposed method is comprised of three stages: data pre-processing, feature extraction and classification. Compared to the recent cloud type recognition methods, the experimental results illustrate that the proposed method acquires a higher recognition rate with an increase of 2%–10% on the ground-based infrared datasets.
In this paper, a novel cloud classification method is proposed to group images into five cloud...
Citation