Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 10
Atmos. Meas. Tech., 11, 5461-5470, 2018
https://doi.org/10.5194/amt-11-5461-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: New observations and related modelling studies of the aerosol–cloud–climate...

Atmos. Meas. Tech., 11, 5461-5470, 2018
https://doi.org/10.5194/amt-11-5461-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Oct 2018

Research article | 05 Oct 2018

First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib

Hendrik Andersen1,2 and Jan Cermak1,2 Hendrik Andersen and Jan Cermak
  • 1Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
  • 2Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing, Karlsruhe, Germany

Abstract. Fog and low clouds (FLCs) are a typical feature along the southwestern African coast, especially in the central Namib, where fog constitutes a valuable resource of water for many ecosystems. In this study, a novel algorithm is presented to detect FLCs over land from geostationary satellite data using only infrared observations. The algorithm is the first of its kind as it is stationary in time and thus able to reveal a detailed view of the diurnal and spatial patterns of FLCs in the Namib region. A validation against net radiation measurements from a station network in the central Namib reveals a high overall accuracy with a probability of detection of 94%, a false-alarm rate of 12% and an overall correctness of classification of 97%. The average timing and persistence of FLCs seem to depend on the distance to the coast, suggesting that the region is dominated by advection-driven FLCs. While the algorithm is applied to study Namib-region fog and low clouds, it is designed to be transferable to other regions and can be used to retrieve long-term data sets.

Publications Copernicus
Special issue
Download
Short summary
Fog and low clouds (FLCs) are a valuable source of water for many ecosystems in the Namib. This study presents the first fully diurnal satellite detection of FLCs, revealing the spatial and temporal patterns in the Namib. A validation is conducted against station measurements in the central Namib and shows a high overall accuracy. The average timing and persistence of FLCs seem to depend on the distance to the coast, suggesting that the region is dominated by advection-driven FLCs.
Fog and low clouds (FLCs) are a valuable source of water for many ecosystems in the Namib. This...
Citation
Share