Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 1 | Copyright

Special issue: Airborne ROmanian Measurements of Aerosols and Trace gases...

Atmos. Meas. Tech., 11, 551-567, 2018
https://doi.org/10.5194/amt-11-551-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Jan 2018

Research article | 29 Jan 2018

The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign

Alexis Merlaud1, Frederik Tack1, Daniel Constantin2, Lucian Georgescu2, Jeroen Maes1, Caroline Fayt1, Florin Mingireanu3, Dirk Schuettemeyer4, Andreas Carlos Meier5, Anja Schönardt5, Thomas Ruhtz6, Livio Bellegante7, Doina Nicolae7, Mirjam Den Hoed8, Marc Allaart8, and Michel Van Roozendael1 Alexis Merlaud et al.
  • 1Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, 1180 Brussels, Belgium
  • 2“Dunarea de Jos” University of Galati, Str. Domneasca 111, Galati 800008, Romania
  • 3Romanian Space Agency (ROSA), Mendeleev Street, nr. 21–25, Bucharest 10362, Romania
  • 4European Space Agency (ESA-ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
  • 5Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
  • 6Institute for Space Sciences, Free University of Berlin, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany
  • 7National Institute of R&D for Optoelectronics (INOE), Street Atomistilor 409, Magurele 77125, Romania
  • 8Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3731 GA De Bilt, the Netherlands

Abstract. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920g, 27cm × 12cm × 8cm, and 6W. SWING was developed in parallel with a 2.5m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100km h−1, and can operate at a maximum altitude of 3km.

We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700m above ground, in the vicinity of the large power plant of Turceni (44.67°N, 23.41°E; 116m a. s. l. ). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations.

The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016molec cm−2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016molec cm−2. The water vapour DSCD measurements, up to 8±0.15×1022molec cm−2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002mol mol−1. These geophysical quantities are validated with the coincident measurements.

Publications Copernicus
Special issue
Download
Short summary
We present SWING-UAV, an atmospheric observation system based on a compact scanning spectrometer (SWING) mounted on an unmanned aerial vehicle (UAV). SWING-UAV was operated in the exhaust plume of a power plant in Romania in September 2014, during the AROMAT campaign. SWING quantified the NO2 emitted by the plant and the water vapour content in the boundary layer, in agreement with ancillary data. The system appears in particular promising to study emissions in rural areas.
We present SWING-UAV, an atmospheric observation system based on a compact scanning spectrometer...
Citation
Share