Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 10 | Copyright
Atmos. Meas. Tech., 11, 5643-5655, 2018
https://doi.org/10.5194/amt-11-5643-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Oct 2018

Research article | 16 Oct 2018

An in situ flow tube system for direct measurement of N2O5 heterogeneous uptake coefficients in polluted environments

Weihao Wang1, Zhe Wang1, Chuan Yu1,2, Men Xia1, Xiang Peng1, Yan Zhou3, Dingli Yue3, Yubo Ou3, and Tao Wang1 Weihao Wang et al.
  • 1Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
  • 2Environment Research Institute, Shandong University, Ji'nan, Shandong, China
  • 3Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, China

Abstract. The heterogeneous reactivity of dinitrogen pentoxide (N2O5) on ambient aerosols plays a key role in the atmospheric fate of NOx and formation of secondary pollutants. To better understand the reactive uptake of N2O5 on complex ambient aerosols, an in situ experimental approach to direct measurement of N2O5 uptake coefficient (γN2O5) was developed for application in environments with high, variable ambient precursors. The method utilizes an aerosol flow tube reactor coupled with an iterative chemical box model to derive γN2O5 from the depletion of synthetically generated N2O5 when mixed with ambient aerosols. Laboratory tests and model simulations were performed to characterize the system and the factors affecting γN2O5, including mean residence time, wall loss variability with relative humidity (RH), and N2O5 formation and titration with high levels of NO, NOx, and O3. The overall uncertainty was estimated to be 37%–40% at γN2O5 of 0.03 for RH varying from 20% to 70%. The results indicate that this flow tube coupled with the iterative model method could be buffered to NO concentrations below 8ppbv and against air mass fluctuations switching between aerosol and non-aerosol modes. The system was then deployed in the field to test its applicability under conditions of high ambient NO2 and O3 and fresh NO emission. The results demonstrate that the iterative model improved the accuracy of γN2O5 calculations in polluted environments and thus support the further field deployment of the system to study the impacts of heterogeneous N2O5 reactivity on photochemistry and aerosol formation.

Publications Copernicus
Download
Short summary
This study introduces an in situ experimental approach to direct measurement of N2O5 heterogeneous reactivity in polluted environments. Laboratory tests, model simulations, and field deployment of the method at a polluted site in south China demonstrated its applicability in accurately measuring N2O5 uptake coefficient with high ambient pollutants levels and air mass changes. The introduced method is also applicable to in situ measurement of reactivity of other trace gases on ambient aerosols.
This study introduces an in situ experimental approach to direct measurement of N2O5...
Citation
Share