Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 11, issue 1
Atmos. Meas. Tech., 11, 569–580, 2018
https://doi.org/10.5194/amt-11-569-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Observing Atmosphere and Climate with Occultation Techniques...

Atmos. Meas. Tech., 11, 569–580, 2018
https://doi.org/10.5194/amt-11-569-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Jan 2018

Research article | 29 Jan 2018

Analysis of reflections in GNSS radio occultation measurements using the phase matching amplitude

Thomas Sievert et al.

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Monitoring the differential reflectivity and receiver calibration of the German polarimetric weather radar network
Michael Frech and John Hubbert
Atmos. Meas. Tech., 13, 1051–1069, https://doi.org/10.5194/amt-13-1051-2020,https://doi.org/10.5194/amt-13-1051-2020, 2020
Short summary
A channel selection method for hyperspectral atmospheric infrared sounders based on layering
Shujie Chang, Zheng Sheng, Huadong Du, Wei Ge, and Wei Zhang
Atmos. Meas. Tech., 13, 629–644, https://doi.org/10.5194/amt-13-629-2020,https://doi.org/10.5194/amt-13-629-2020, 2020
Short summary
Improved fuzzy logic method to distinguish between meteorological and non-meteorological echoes using C-band polarimetric radar data
Shuai Zhang, Xingyou Huang, Jinzhong Min, Zhigang Chu, Xiaoran Zhuang, and Hengheng Zhang
Atmos. Meas. Tech., 13, 537–551, https://doi.org/10.5194/amt-13-537-2020,https://doi.org/10.5194/amt-13-537-2020, 2020
Short summary
Advanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations
Irina Strelnikova, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Meas. Tech., 13, 479–499, https://doi.org/10.5194/amt-13-479-2020,https://doi.org/10.5194/amt-13-479-2020, 2020
Short summary
Rayleigh wind retrieval for the ALADIN airborne demonstrator of the Aeolus mission using simulated response calibration
Xiaochun Zhai, Uwe Marksteiner, Fabian Weiler, Christian Lemmerz, Oliver Lux, Benjamin Witschas, and Oliver Reitebuch
Atmos. Meas. Tech., 13, 445–465, https://doi.org/10.5194/amt-13-445-2020,https://doi.org/10.5194/amt-13-445-2020, 2020
Short summary

Cited articles

Beckmann, P. and Spizzichino, A.: The Scattering of Electromagnetic Waves from Rough Surfaces, International Series of Monographs on Electromagnetic Waves, Pergamon Press, 1963.
Benzon, H. H. and Gorbunov, M. E.: Description of a wave propagator and radio occultation simulations, Tech. rep., EUMETSAT, 2012.
Benzon, H. H., Nielsen, A. S., and Olsen, L.: An atmospheric wave optics propagator – theory and application, Scientific report 03-01, Danish Meteorological Institute, 2003.
Beyerle, G., Hocke, K., Wickert, J., Schmidt, T., Marquardt, C., and Reigber, C.: GPS radio occultations with CHAMP: A radio holographic analysis of GPS signal propagation in the troposphere and surface reflections, J. Geophys. Res.-Atmos., 107, ACL 27-1–ACL 27-14, https://doi.org/10.1029/2001JD001402, 2002.
Bloomfield, P.: Fourier analysis of time series: an introduction, John Wiley & Sons, 2004.
Publications Copernicus
Download
Short summary
In this paper we analyze GNSS radio occultation measurement data from the MetOp-A satellite using a particular operator called phase matching. We find that reflected GNSS signals can be distinguished using this method and that there are structures that differ significantly from simulated measurements. Making radio occultation measurements in the lower troposphere is difficult, and the motivation of this study is to investigate different ways of addressing this problem.
In this paper we analyze GNSS radio occultation measurement data from the MetOp-A satellite...
Citation