Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 10 | Copyright
Atmos. Meas. Tech., 11, 5741-5765, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Oct 2018

Research article | 18 Oct 2018

MODIS Collection 6 MAIAC algorithm

Alexei Lyapustin1, Yujie Wang2, Sergey Korkin3, and Dong Huang4 Alexei Lyapustin et al.
  • 1Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
  • 2University of Maryland Baltimore County, Baltimore, Maryland, USA
  • 3Universities Space Research Association, Columbia, Maryland, USA
  • 4Science Systems and Applications, Inc., Lanham, MD 20709, USA

Abstract. This paper describes the latest version of the algorithm MAIAC used for processing the MODIS Collection 6 data record. Since initial publication in 2011–2012, MAIAC has changed considerably to adapt to global processing and improve cloud/snow detection, aerosol retrievals and atmospheric correction of MODIS data. The main changes include (1) transition from a 25 to 1km scale for retrieval of the spectral regression coefficient (SRC) which helped to remove occasional blockiness at 25km scale in the aerosol optical depth (AOD) and in the surface reflectance, (2) continuous improvements of cloud detection, (3) introduction of smoke and dust tests to discriminate absorbing fine- and coarse-mode aerosols, (4) adding over-water processing, (5) general optimization of the LUT-based radiative transfer for the global processing, and others. MAIAC provides an interdisciplinary suite of atmospheric and land products, including cloud mask (CM), column water vapor (CWV), AOD at 0.47 and 0.55µm, aerosol type (background, smoke or dust) and fine-mode fraction over water; spectral bidirectional reflectance factors (BRF), parameters of Ross-thick Li-sparse (RTLS) bidirectional reflectance distribution function (BRDF) model and instantaneous albedo. For snow-covered surfaces, we provide subpixel snow fraction and snow grain size. All products come in standard HDF4 format at 1km resolution, except for BRF, which is also provided at 500m resolution on a sinusoidal grid adopted by the MODIS Land team. All products are provided on per-observation basis in daily files except for the BRDF/Albedo product, which is reported every 8 days. Because MAIAC uses a time series approach, BRDF/Albedo is naturally gap-filled over land where missing values are filled-in with results from the previous retrieval. While the BRDF model is reported for MODIS Land bands 1–7 and ocean band 8, BRF is reported for both land and ocean bands 1–12. This paper focuses on MAIAC cloud detection, aerosol retrievals and atmospheric correction and describes MCD19 data products and quality assurance (QA) flags.

Publications Copernicus
Short summary
MAIAC algorithm used for the MODIS C6 processing is described. MAIAC combines time series analysis and pixel/image-based processing to improve the accuracy of cloud detection, aerosol retrievals and atmospheric correction. MAIAC offers an interdisciplinary suite of atmospheric, land surface and snow products. Due to generally high quality, high resolution and high coverage, MAIAC AOD and surface reflectance/BRDF have been widely used for air quality and land research and applications.
MAIAC algorithm used for the MODIS C6 processing is described. MAIAC combines time series...