Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 10
Atmos. Meas. Tech., 11, 5741–5765, 2018
https://doi.org/10.5194/amt-11-5741-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 5741–5765, 2018
https://doi.org/10.5194/amt-11-5741-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Oct 2018

Research article | 18 Oct 2018

MODIS Collection 6 MAIAC algorithm

Alexei Lyapustin et al.
Related authors  
Gradient Boosting Machine Learning to Improve Satellite-Derived Column Water Vapor Measurement Error
Allan C. Just, Yang Liu, Meytar Sorek-Hamer, Johnathan Rush, Michael Dorman, Robert Chatfield, Yujie Wang, Alexei Lyapustin, and Itai Kloog
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-308,https://doi.org/10.5194/amt-2019-308, 2019
Manuscript under review for AMT
Short summary
Improved 1-km-resolution PM2.5 estimates across China using the space-time extremely randomized trees
Jing Wei, Zhanqing Li, Wei Huang, Wenhao Xue, Lin Sun, Jianping Guo, Yiran Peng, Jing Li, Alexei Lyapustin, Lei Liu, Hao Wu, and Yimeng Song
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-815,https://doi.org/10.5194/acp-2019-815, 2019
Manuscript under review for ACP
Short summary
Assessment of urban aerosol pollution over Moscow megacity by MAIAC aerosol product
Ekaterina Y. Zhdanova, Natalia Y. Chubarova, and Alexei I. Lyapustin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-325,https://doi.org/10.5194/amt-2019-325, 2019
Manuscript under review for AMT
Short summary
Satellite Mapping of PM2.5 Episodes in the Wintertime San Joaquin Valley: A "Static" Model Using Column Water Vapor
Robert B. Chatfield, Meytar Sorek-Hamer, Robert F. Esswein, and Alexei Lyapustin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-262,https://doi.org/10.5194/acp-2019-262, 2019
Revised manuscript under review for ACP
Short summary
Merging regional and global AOD records from 15 available satellite products
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, and Omar Torres
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-446,https://doi.org/10.5194/acp-2019-446, 2019
Revised manuscript under review for ACP
Short summary
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019,https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Steven Platnick, Kerry Meyer, Rich Ferrare, Sharon Burton, Chris Hostetler, Steven Howell, Steffen Freitag, Amie Dobracki, and Sarah Doherty
Atmos. Meas. Tech., 12, 6505–6528, https://doi.org/10.5194/amt-12-6505-2019,https://doi.org/10.5194/amt-12-6505-2019, 2019
Short summary
The role of aerosol layer height in quantifying aerosol absorption from ultraviolet satellite observations
Jiyunting Sun, Pepijn Veefkind, Swadhin Nanda, Peter van Velthoven, and Pieternel Levelt
Atmos. Meas. Tech., 12, 6319–6340, https://doi.org/10.5194/amt-12-6319-2019,https://doi.org/10.5194/amt-12-6319-2019, 2019
Short summary
Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation
Rebecca M. Pauly, John E. Yorks, Dennis L. Hlavka, Matthew J. McGill, Vassilis Amiridis, Stephen P. Palm, Sharon D. Rodier, Mark A. Vaughan, Patrick A. Selmer, Andrew W. Kupchock, Holger Baars, and Anna Gialitaki
Atmos. Meas. Tech., 12, 6241–6258, https://doi.org/10.5194/amt-12-6241-2019,https://doi.org/10.5194/amt-12-6241-2019, 2019
Short summary
CALIPSO level 3 stratospheric aerosol profile product: version 1.00 algorithm description and initial assessment
Jayanta Kar, Kam-Pui Lee, Mark A. Vaughan, Jason L. Tackett, Charles R. Trepte, David M. Winker, Patricia L. Lucker, and Brian J. Getzewich
Atmos. Meas. Tech., 12, 6173–6191, https://doi.org/10.5194/amt-12-6173-2019,https://doi.org/10.5194/amt-12-6173-2019, 2019
Short summary
Cited articles  
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear-sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998. 
Ackerman, S., Frey, R., Strabala, Liu, Y., Gumley, L., Baum, B., and Menzel, P.: Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35), 121 pp., available at: https://modis-atmos.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD35_ATBD_Collection6_0.pdf (last access: 9 October 2018), 2010. 
Albert, P., Bennartz, R., Preusker, R., Leinweber, R., and Fischer, J.: Remote Sensing of Atmospheric Water Vapor Using the Moderate Resolution Imaging Spectroradiometer, J. Atmos. Ocean. Tech., 22, 309–314, https://doi.org/10.1175/JTECH1708.1, 2005. 
Bi, J., Knyazikhin, Y., Choi, S., Park, T., Barichivich, J., Ciais, P., Fu, R., Ganguly, S., Hall, F., Hilker, T., Huete, A., Jones, M., Kimball, J., Lyapustin, A., Mottus, M., Nemani, R., Piao, S., Poulter, B., Saleska, S., Saatchi, S., Xu, L., Zhou, L., and Myneni, R.: Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests, Environ. Res. Lett., 10, 064014; https://doi.org/10.1088/1748-9326/10/6/064014, 2015. 
Publications Copernicus
Download
Short summary
MAIAC algorithm used for the MODIS C6 processing is described. MAIAC combines time series analysis and pixel/image-based processing to improve the accuracy of cloud detection, aerosol retrievals and atmospheric correction. MAIAC offers an interdisciplinary suite of atmospheric, land surface and snow products. Due to generally high quality, high resolution and high coverage, MAIAC AOD and surface reflectance/BRDF have been widely used for air quality and land research and applications.
MAIAC algorithm used for the MODIS C6 processing is described. MAIAC combines time series...
Citation