Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 11 | Copyright
Atmos. Meas. Tech., 11, 5981-6002, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Oct 2018

Research article | 30 Oct 2018

Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer

Xinhua Zhou1,2,3, Qinghua Yang1, Xiaojie Zhen4, Yubin Li5, Guanghua Hao6, Hui Shen6, Tian Gao2, Yirong Sun2, and Ning Zheng3 Xinhua Zhou et al.
  • 1Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
  • 2CAS-CSI Joint Laboratory of Research and Development for Monitoring Forest Fluxes of Trace Gases and Isotope Elements, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
  • 3Campbell Scientific Incorporation, Logan, Utah 84321, USA
  • 4Beijing Techno Solutions Ltd., Beijing 100089, China
  • 5Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 6National Marine Environmental Forecasting Center, Beijing 100081, China

Abstract. A sonic anemometer reports three-dimensional (3-D) wind and sonic temperature (Ts) by measuring the time of ultrasonic signals transmitting along each of its three sonic paths, whose geometry of lengths and angles in the anemometer coordinate system was precisely determined through production calibrations and the geometry data were embedded into the sonic anemometer operating system (OS) for internal computations. If this geometry is deformed, although correctly measuring the time, the sonic anemometer continues to use its embedded geometry data for internal computations, resulting in incorrect output of 3-D wind and Ts data. However, if the geometry is remeasured (i.e., recalibrated) and to update the OS, the sonic anemometer can resume outputting correct data. In some cases, where immediate recalibration is not possible, a deformed sonic anemometer can be used because the ultrasonic signal-transmitting time is still correctly measured and the correct time can be used to recover the data through post processing. For example, in 2015, a sonic anemometer was geometrically deformed during transportation to Antarctica. Immediate deployment was critical, so the deformed sonic anemometer was used until a replacement arrived in 2016. Equations and algorithms were developed and implemented into the post-processing software to recover wind data with and without transducer-shadow correction and Ts data with crosswind correction. Post-processing used two geometric datasets, production calibration and recalibration, to recover the wind and Ts data from May 2015 to January 2016. The recovery reduced the difference of 9.60 to 8.93°C between measured and calculated Ts to 0.81 to −0.45°C, which is within the expected range, due to normal measurement errors. The recovered data were further processed to derive fluxes. As data reacquisition is time-consuming and expensive, this data-recovery approach is a cost-effective and time-saving option for similar cases. The equation development can be a reference for related topics.

Publications Copernicus
Short summary
The three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer was successfully recovered by developing equations, algorithms, and related software. Using two sets of geometry data from production calibration and return re-calibration, this algorithm can recover wind with/without transducer shadow correction and sonic temperature with crosswind correction, and then obtain fluxes at quality as expected. This study is applicable as a reference for related topics.
The three-dimensional wind and sonic temperature data from a physically deformed sonic...