Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 11
Atmos. Meas. Tech., 11, 6043–6058, 2018
https://doi.org/10.5194/amt-11-6043-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 6043–6058, 2018
https://doi.org/10.5194/amt-11-6043-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Nov 2018

Research article | 08 Nov 2018

Improvements to a long-term Rayleigh-scatter lidar temperature climatology by using an optimal estimation method

Ali Jalali et al.
Related authors  
A practical information-centered technique to remove a priori information from lidar optimal-estimation-method retrievals
Ali Jalali, Shannon Hicks-Jalali, Robert J. Sica, Alexander Haefele, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 3943–3961, https://doi.org/10.5194/amt-12-3943-2019,https://doi.org/10.5194/amt-12-3943-2019, 2019
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multiple technical observations of the atmospheric boundary layer structure of a red-alert haze episode in Beijing
Yu Shi, Fei Hu, Guangqiang Fan, and Zhe Zhang
Atmos. Meas. Tech., 12, 4887–4901, https://doi.org/10.5194/amt-12-4887-2019,https://doi.org/10.5194/amt-12-4887-2019, 2019
Short summary
Characterization of shallow oceanic precipitation using profiling and scanning radar observations at the Eastern North Atlantic ARM observatory
Katia Lamer, Bernat Puigdomènech Treserras, Zeen Zhu, Bradley Isom, Nitin Bharadwaj, and Pavlos Kollias
Atmos. Meas. Tech., 12, 4931–4947, https://doi.org/10.5194/amt-12-4931-2019,https://doi.org/10.5194/amt-12-4931-2019, 2019
Short summary
Assimilation of GNSS tomography products into the Weather Research and Forecasting model using radio occultation data assimilation operator
Natalia Hanna, Estera Trzcina, Gregor Möller, Witold Rohm, and Robert Weber
Atmos. Meas. Tech., 12, 4829–4848, https://doi.org/10.5194/amt-12-4829-2019,https://doi.org/10.5194/amt-12-4829-2019, 2019
Short summary
Tropopause altitude determination from temperature profile measurements of reduced vertical resolution
Nils König, Peter Braesicke, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 4113–4129, https://doi.org/10.5194/amt-12-4113-2019,https://doi.org/10.5194/amt-12-4113-2019, 2019
Short summary
A generalized simulation capability for rotating- beam scatterometers
Zhen Li, Ad Stoffelen, and Anton Verhoef
Atmos. Meas. Tech., 12, 3573–3594, https://doi.org/10.5194/amt-12-3573-2019,https://doi.org/10.5194/amt-12-3573-2019, 2019
Short summary
Cited articles  
Argall, P. S. and Sica, R. J.: A comparison of Rayleigh and sodium lidar temperature climatologies, Ann. Geophys., 25, 27–35, https://doi.org/10.5194/angeo-25-27-2007, 2007. a, b, c
Argall, P. S., Vassiliev, O. N., Sica, R. J., and Mwangi, M. M.: Lidar measurements taken with a large-aperture liquid mirror: 2. The Sodium resonance-fluorescence system, Appl. Optics, 39, 2393–2399, 2000. a
Arnold, K. S. and She, C. Y.: Metal fluorescence lidar (light detection and ranging) and the middle atmosphere, Contemp. Phys., 44, 35–49, 2003. a
Bills, R. E., Gardner, C. S., and She, C. Y.: Narrow band lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere, Opt. Eng., 30, 13–21, 1991. a
Fleming, E. L., Chandra, S., Shoeberl, M. R., and Barnett, J. J.: Monthly Mean Global Climatology of Temperature, Wind, Geopotential Height and Pressure for 0–120 km, NASA Tech. Memo., NASA TM100697, 85 pp., 1988. a, b
Publications Copernicus
Download
Short summary
We use 16 years of lidar (laser radar) temperature measurements of the middle atmosphere to form a climatology for use in studying atmospheric temperature change using an optimal estimation method (OEM). Using OEM allows us to calculate a complete systematic and random uncertainty budget and allows for an additional 10–15 km in altitude for the measurement to be used, improving our ability to detect atmospheric temperature change up to 100 km of altitude.
We use 16 years of lidar (laser radar) temperature measurements of the middle atmosphere to form...
Citation