Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 12
Atmos. Meas. Tech., 11, 6511–6523, 2018
https://doi.org/10.5194/amt-11-6511-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 6511–6523, 2018
https://doi.org/10.5194/amt-11-6511-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Dec 2018

Research article | 06 Dec 2018

Boundary-layer water vapor profiling using differential absorption radar

Richard J. Roy et al.

Viewed

Total article views: 1,179 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
806 353 20 1,179 33 32
  • HTML: 806
  • PDF: 353
  • XML: 20
  • Total: 1,179
  • BibTeX: 33
  • EndNote: 32
Views and downloads (calculated since 15 Aug 2018)
Cumulative views and downloads (calculated since 15 Aug 2018)

Viewed (geographical distribution)

Total article views: 1,045 (including HTML, PDF, and XML) Thereof 1,038 with geography defined and 7 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 09 Jul 2020
Publications Copernicus
Download
Short summary
The measurement of water vapor profiles inside clouds with high spatial resolution represents an outstanding problem in atmospheric remote sensing. Here we present measurements from a proof-of-concept millimeter-wave (170 GHz) cloud radar aimed at filling this observational gap, and demonstrate the ability to retrieve in-cloud water vapor profiles with high precision and resolution. This technology could meaningfully impact future satellite-based measurements of water vapor.
The measurement of water vapor profiles inside clouds with high spatial resolution represents an...
Citation