Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 12
Atmos. Meas. Tech., 11, 6511–6523, 2018
https://doi.org/10.5194/amt-11-6511-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 6511–6523, 2018
https://doi.org/10.5194/amt-11-6511-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Dec 2018

Research article | 06 Dec 2018

Boundary-layer water vapor profiling using differential absorption radar

Richard J. Roy et al.

Related authors

Assessment of global total column water vapor sounding using a spaceborne differential absorption radar
Luis Millán, Richard Roy, and Matthew Lebsock
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-97,https://doi.org/10.5194/amt-2020-97, 2020
Preprint under review for AMT
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm
Daniel J. Miller, Michal Segal-Rozenhaimer, Kirk Knobelspiesse, Jens Redemann, Brian Cairns, Mikhail Alexandrov, Bastiaan van Diedenhoven, and Andrzej Wasilewski
Atmos. Meas. Tech., 13, 3447–3470, https://doi.org/10.5194/amt-13-3447-2020,https://doi.org/10.5194/amt-13-3447-2020, 2020
Short summary
A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020,https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Using Two-Stream Theory to Capture Fluctuations of Satellite-Perceived TOA SW Radiances Reflected from Clouds over Ocean
Florian Tornow, Carlos Domenech, Howard W. Barker, René Preusker, and Jürgen Fischer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-149,https://doi.org/10.5194/amt-2020-149, 2020
Revised manuscript accepted for AMT
Short summary
SegCloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation
Wanyi Xie, Dong Liu, Ming Yang, Shaoqing Chen, Benge Wang, Zhenzhu Wang, Yingwei Xia, Yong Liu, Yiren Wang, and Chaofang Zhang
Atmos. Meas. Tech., 13, 1953–1961, https://doi.org/10.5194/amt-13-1953-2020,https://doi.org/10.5194/amt-13-1953-2020, 2020
Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements
Brent A. McBride, J. Vanderlei Martins, Henrique M. J. Barbosa, William Birmingham, and Lorraine A. Remer
Atmos. Meas. Tech., 13, 1777–1796, https://doi.org/10.5194/amt-13-1777-2020,https://doi.org/10.5194/amt-13-1777-2020, 2020
Short summary

Cited articles

Abel, S. J. and Boutle, I. A.: An improved representation of the raindrop size distribution for single-moment microphysics schemes, Q. J. Roy. Meteor. Soc., 138, 2151–2162, 2012. a
Battaglia, A., Westbrook, C. D., Kneifel, S., Kollias, P., Humpage, N., Löhnert, U., Tyynelä, J., and Petty, G. W.: G band atmospheric radars: new frontiers in cloud physics, Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014, 2014. a
Beard, K. V.: Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft, J. Atmos. Sci., 33, 851–864, 1976. a
Browell, E., Ismail, S., and Grant, W.: Differential absorption lidar (DIAL) measurements from air and space, Appl. Phys. B, 67, 399–410, 1998. a
Browell, E. V., Wilkerson, T. D., and Mcilrath, T. J.: Water vapor differential absorption lidar development and evaluation, Appl. Optics, 18, 3474–3483, 1979. a
Publications Copernicus
Download
Short summary
The measurement of water vapor profiles inside clouds with high spatial resolution represents an outstanding problem in atmospheric remote sensing. Here we present measurements from a proof-of-concept millimeter-wave (170 GHz) cloud radar aimed at filling this observational gap, and demonstrate the ability to retrieve in-cloud water vapor profiles with high precision and resolution. This technology could meaningfully impact future satellite-based measurements of water vapor.
The measurement of water vapor profiles inside clouds with high spatial resolution represents an...
Citation