Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
AMT | Articles | Volume 11, issue 12
Atmos. Meas. Tech., 11, 6589-6603, 2018
https://doi.org/10.5194/amt-11-6589-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 11, 6589-6603, 2018
https://doi.org/10.5194/amt-11-6589-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Dec 2018

Research article | 14 Dec 2018

Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 1: theoretical concept

Yves Govaerts and Marta Luffarelli
Related authors  
Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space: Part 2: Application to geostationary and polar orbiting satellite observations
Marta Luffarelli and Yves Govaerts
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-265,https://doi.org/10.5194/amt-2018-265, 2018
Revised manuscript under review for AMT
Short summary
LSA SAF Meteosat FRP products – Part 1: Algorithms, product contents, and analysis
M. J. Wooster, G. Roberts, P. H. Freeborn, W. Xu, Y. Govaerts, R. Beeby, J. He, A. Lattanzio, D. Fisher, and R. Mullen
Atmos. Chem. Phys., 15, 13217-13239, https://doi.org/10.5194/acp-15-13217-2015,https://doi.org/10.5194/acp-15-13217-2015, 2015
Short summary
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Aerosol monitoring in Siberia using an 808 nm automatic compact lidar
Gerard Ancellet, Iogannes E. Penner, Jacques Pelon, Vincent Mariage, Antonin Zabukovec, Jean Christophe Raut, Grigorii Kokhanenko, and Yuri S. Balin
Atmos. Meas. Tech., 12, 147-168, https://doi.org/10.5194/amt-12-147-2019,https://doi.org/10.5194/amt-12-147-2019, 2019
Short summary
Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements
David M. Giles, Alexander Sinyuk, Mikhail G. Sorokin, Joel S. Schafer, Alexander Smirnov, Ilya Slutsker, Thomas F. Eck, Brent N. Holben, Jasper R. Lewis, James R. Campbell, Ellsworth J. Welton, Sergey V. Korkin, and Alexei I. Lyapustin
Atmos. Meas. Tech., 12, 169-209, https://doi.org/10.5194/amt-12-169-2019,https://doi.org/10.5194/amt-12-169-2019, 2019
Short summary
A shape model of internally mixed soot particles derived from artificial surface tension
Hiroshi Ishimoto, Rei Kudo, and Kouji Adachi
Atmos. Meas. Tech., 12, 107-118, https://doi.org/10.5194/amt-12-107-2019,https://doi.org/10.5194/amt-12-107-2019, 2019
Short summary
Retrieval of aerosol microphysical and optical properties over land using a multimode approach
Guangliang Fu and Otto Hasekamp
Atmos. Meas. Tech., 11, 6627-6650, https://doi.org/10.5194/amt-11-6627-2018,https://doi.org/10.5194/amt-11-6627-2018, 2018
Short summary
Analysis of a warehouse fire smoke plume over Paris with an N2 Raman lidar and an optical thickness matching algorithm
Xiaoxia Shang, Patrick Chazette, and Julien Totems
Atmos. Meas. Tech., 11, 6525-6538, https://doi.org/10.5194/amt-11-6525-2018,https://doi.org/10.5194/amt-11-6525-2018, 2018
Short summary
Cited articles  
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from Photographs of the Sun's Glitter, J. Opt. Soc. Am., 44, 838–850, https://doi.org/10.1364/JOSA.44.000838, 1954. a
Diner, D. J., Hodos, R. A., Davis, A. B., Garay, M. J., Martonchik, J. V., Sanghavi, S. V., von Allmen, P., Kokhanovsky, A. A., and Zhai, P.: An optimization approach for aerosol retrievals using simulated MISR radiances, Atmos. Res., 116, 1–14, https://doi.org/10.1016/j.atmosres.2011.05.020, 2012. a, b
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F., Volten, H., Munoz, O., Veihelmann, B., van der Zande, W. J., Leon, J. F., Sorokin, M., and Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res.-Atmos., 111, 11208–11208, 2006. a, b, c, d, e, f
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011. a, b, c, d
Fischer, J. and Grassl, H.: Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix-operator approach, Appl. Optics, 23, 1032–1039, 1984. a
Publications Copernicus
Download
Short summary
This paper presents a new algorithm for the joint retrieval of surface reflectance and aerosol properties with continuous variations of the state variables in the solution space. This algorithm, named CISAR (Combined Inversion of Surface and AeRosol), relies on a simple atmospheric vertical structure composed of two layers and an underlying surface. Surface anisotropic reflectance effects are taken into account and radiatively coupled with atmospheric scattering.
This paper presents a new algorithm for the joint retrieval of surface reflectance and aerosol...
Citation
Share