Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 12
Atmos. Meas. Tech., 11, 6605-6615, 2018
https://doi.org/10.5194/amt-11-6605-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 11, 6605-6615, 2018
https://doi.org/10.5194/amt-11-6605-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Dec 2018

Research article | 14 Dec 2018

Metrology of solar spectral irradiance at the top of the atmosphere in the near infrared measured at Mauna Loa Observatory: the PYR-ILIOS campaign

Nuno Pereira et al.
Related authors  
Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range
Ralf Zuber, Peter Sperfeld, Stefan Riechelmann, Saulius Nevas, Meelis Sildoja, and Gunther Seckmeyer
Atmos. Meas. Tech., 11, 2477-2484, https://doi.org/10.5194/amt-11-2477-2018,https://doi.org/10.5194/amt-11-2477-2018, 2018
Short summary
The high-resolution extraterrestrial solar spectrum (QASUMEFTS) determined from ground-based solar irradiance measurements
Julian Gröbner, Ingo Kröger, Luca Egli, Gregor Hülsen, Stefan Riechelmann, and Peter Sperfeld
Atmos. Meas. Tech., 10, 3375-3383, https://doi.org/10.5194/amt-10-3375-2017,https://doi.org/10.5194/amt-10-3375-2017, 2017
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance
Giovanni Bianchini, Francesco Castagnoli, Gianluca Di Natale, and Luca Palchetti
Atmos. Meas. Tech., 12, 619-635, https://doi.org/10.5194/amt-12-619-2019,https://doi.org/10.5194/amt-12-619-2019, 2019
Short summary
Automated compact mobile Raman lidar for water vapor measurement: instrument description and validation by comparison with radiosonde, GNSS, and high-resolution objective analysis
Tetsu Sakai, Tomohiro Nagai, Toshiharu Izumi, Satoru Yoshida, and Yoshinori Shoji
Atmos. Meas. Tech., 12, 313-326, https://doi.org/10.5194/amt-12-313-2019,https://doi.org/10.5194/amt-12-313-2019, 2019
Short summary
Implementation of polarization diversity pulse-pair technique using airborne W-band radar
Mengistu Wolde, Alessandro Battaglia, Cuong Nguyen, Andrew L. Pazmany, and Anthony Illingworth
Atmos. Meas. Tech., 12, 253-269, https://doi.org/10.5194/amt-12-253-2019,https://doi.org/10.5194/amt-12-253-2019, 2019
Short summary
Doppler W-band polarization diversity space-borne radar simulator for wind studies
Alessandro Battaglia, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 11, 5965-5979, https://doi.org/10.5194/amt-11-5965-2018,https://doi.org/10.5194/amt-11-5965-2018, 2018
Short summary
The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications
Yueqiang Sun, Weihua Bai, Congliang Liu, Yan Liu, Qifei Du, Xianyi Wang, Guanglin Yang, Mi Liao, Zhongdong Yang, Xiaoxin Zhang, Xiangguang Meng, Danyang Zhao, Junming Xia, Yuerong Cai, and Gottfried Kirchengast
Atmos. Meas. Tech., 11, 5797-5811, https://doi.org/10.5194/amt-11-5797-2018,https://doi.org/10.5194/amt-11-5797-2018, 2018
Short summary
Cited articles  
Arvesen, J. C., Griffin, R. N., and Pearson, D. J.: Determination of extraterrestrial solar spectral irradiance from a research aircraft, Appl. Opt., 8, 2215–2232, 1969. a
Bennett, G. G.: The Calculation of Astronomical Refraction in Marine Navigation, J. Navigation, 35, 255–259, https://doi.org/10.1017/s0373463300022037, 1982. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.: MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, edited by: Velez-Reyes, M. and Kruse, F. A., SPIE, https://doi.org/10.1117/12.2050433, 2014. a
Blanc, P., Espinar, B., Geuder, N., Gueymard, C., Meyer, R., Pitz-Paal, R., Reinhardt, B., Renné, D., Sengupta, M., Wald, L., and Wilbert, S.: Direct normal irradiance related definitions and applications: The circumsolar issue, Sol. Energy, 110, 561–577, https://doi.org/10.1016/j.solener.2014.10.001, 2014. a
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh Optical Depth Calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, https://doi.org/10.1175/1520-0426(1999)016<1854:orodc>2.0.co;2, 1999. a
Publications Copernicus
Download
Short summary
The knowledge of the solar spectrum at the top of Earth's atmosphere is of great importance for climatic studies. Satellite instruments allow direct measurements; however, their calibration presents issues. It is possible to determine this spectrum precisely from Earth-based measurements as well, using the Langley plot technique and accurate calibration techniques. We present an infrared spectrum using these techniques for measurements made at the reference Mauna Loa Observatory.
The knowledge of the solar spectrum at the top of Earth's atmosphere is of great importance for...
Citation