Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 11, issue 12
Atmos. Meas. Tech., 11, 6735–6759, 2018
https://doi.org/10.5194/amt-11-6735-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Atmospheric emissions from oil sands development and their...

Atmos. Meas. Tech., 11, 6735–6759, 2018
https://doi.org/10.5194/amt-11-6735-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Dec 2018

Research article | 19 Dec 2018

A fully autonomous ozone, aerosol and nighttime water vapor lidar: a synergistic approach to profiling the atmosphere in the Canadian oil sands region

Kevin B. Strawbridge et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Kevin Strawbridge on behalf of the Authors (16 Aug 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (22 Aug 2018) by Mark Weber
RR by Anonymous Referee #1 (11 Sep 2018)
ED: Publish subject to minor revisions (review by editor) (25 Sep 2018) by Mark Weber
AR by Kevin Strawbridge on behalf of the Authors (01 Oct 2018)  Author's response    Manuscript
ED: Publish as is (08 Oct 2018) by Mark Weber
Publications Copernicus
Download
Short summary
Environment and Climate Change Canada has recently developed a fully autonomous, mobile lidar system to simultaneously measure the vertical profile of tropospheric ozone, aerosol and water vapor from near the ground to altitudes reaching 10–15 km. These atmospheric constituents play an important role in climate, air quality, and human and ecosystem health. Using an autonomous multi-lidar approach provides a continuous dataset rich in information for atmospheric process studies.
Environment and Climate Change Canada has recently developed a fully autonomous, mobile lidar...
Citation