Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 2 | Copyright
Atmos. Meas. Tech., 11, 741-761, 2018
https://doi.org/10.5194/amt-11-741-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Feb 2018

Research article | 07 Feb 2018

Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

Sofia Sklaveniti1,2, Nadine Locoge1, Philip S. Stevens2,3, Ezra Wood4,5, Shuvashish Kundu4, and Sébastien Dusanter1 Sofia Sklaveniti et al.
  • 1IMT Lille Douai, Univ. Lille, SAGE – Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
  • 2School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
  • 3Department of Chemistry, Indiana University, Bloomington, IN, USA
  • 4Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
  • 5Department of Chemistry, Drexel University, Philadelphia, PA, USA

Abstract. Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO+NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions.

An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion–detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements.

This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument. This type of investigations allows checking whether our understanding of the turnover point between NOx-limited and NOx-saturated regimes of ozone production is well understood and does not require measuring ambient OPR but instead only probing the change in ozone production when NO is added. During IRRONIC, changes in ozone production rates ranging from the limit of detection (3σ) of 6.2ppbvh−1 up to 20ppbvh−1 were observed when 6ppbv of NO was added into the flow tubes.

Publications Copernicus
Download
Short summary
Ground-level ozone is a pollutant that affects both global climate change and regional air quality. Its complex formation chemistry makes the implementation of reduction strategies challenging and needs to be well understood to develop efficient strategies. This publication reports the development of an instrument capable of monitoring the ozone formation rate in the atmosphere. Its reliability was tested in the laboratory and in the field and important recommendations are given for improvement.
Ground-level ozone is a pollutant that affects both global climate change and regional air...
Citation
Share