Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 2 | Copyright
Atmos. Meas. Tech., 11, 781-801, 2018
https://doi.org/10.5194/amt-11-781-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Feb 2018

Research article | 08 Feb 2018

Improved optical flow velocity analysis in SO2 camera images of volcanic plumes – implications for emission-rate retrievals investigated at Mt Etna, Italy and Guallatiri, Chile

Jonas Gliß1,2,3,*, Kerstin Stebel1, Arve Kylling1, and Aasmund Sudbø3 Jonas Gliß et al.
  • 1Norwegian Institute for Air Research, Kjeller, Norway
  • 2Department of Physics, University of Oslo (UiO), Oslo, Norway
  • 3Department of Technology Systems, University of Oslo (UiO), Kjeller, Norway
  • * Invited contribution by Jonas Gliß, recipient of the EGU Outstanding Student Poster and PICO (OSPP) Awards 2017.

Abstract. Accurate gas velocity measurements in emission plumes are highly desirable for various atmospheric remote sensing applications. The imaging technique of UV SO2 cameras is commonly used to monitor SO2 emissions from volcanoes and anthropogenic sources (e.g. power plants, ships). The camera systems capture the emission plumes at high spatial and temporal resolution. This allows the gas velocities in the plume to be retrieved directly from the images. The latter can be measured at a pixel level using optical flow (OF) algorithms. This is particularly advantageous under turbulent plume conditions. However, OF algorithms intrinsically rely on contrast in the images and often fail to detect motion in low-contrast image areas. We present a new method to identify ill-constrained OF motion vectors and replace them using the local average velocity vector. The latter is derived based on histograms of the retrieved OF motion fields. The new method is applied to two example data sets recorded at Mt Etna (Italy) and Guallatiri (Chile). We show that in many cases, the uncorrected OF yields significantly underestimated SO2 emission rates. We further show that our proposed correction can account for this and that it significantly improves the reliability of optical-flow-based gas velocity retrievals.

In the case of Mt Etna, the SO2 emissions of the north-eastern crater are investigated. The corrected SO2 emission rates range between 4.8 and 10.7kg s−1 (average of 7.1  ±  1.3 kg s−1) and are in good agreement with previously reported values. For the Guallatiri data, the emissions of the central crater and a fumarolic field are investigated. The retrieved SO2 emission rates are between 0.5 and 2.9kg s−1 (average of 1.3  ±  0.5 kg s−1) and provide the first report of SO2 emissions from this remotely located and inaccessible volcano.

Publications Copernicus
Download
Short summary
The paper focusses on gas-velocity retrievals in emission plumes using optical flow (OF) algorithms applied to remote sensing imagery. OF algorithms can measure the velocities on a pixel level between consecutive images. An issue of OF algorithms is that they often fail to detect motion in contrast-poor image areas. A correction based on histograms of an OF vector field is proposed. The new method is applied to two example volcanic data sets from Mt Etna, Italy and Guallatiri, Chile.
The paper focusses on gas-velocity retrievals in emission plumes using optical flow (OF)...
Citation
Share