Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 2 | Copyright
Atmos. Meas. Tech., 11, 781-801, 2018
https://doi.org/10.5194/amt-11-781-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Feb 2018

Research article | 08 Feb 2018

Improved optical flow velocity analysis in SO2 camera images of volcanic plumes – implications for emission-rate retrievals investigated at Mt Etna, Italy and Guallatiri, Chile

Jonas Gliß et al.
Related authors
Characterising vertical turbulent dispersion by observing artificially released SO2 puffs with UV cameras
Anna Solvejg Dinger, Kerstin Stebel, Massimo Cassiani, Hamidreza Ardeshiri, Cirilo Bernardo, Arve Kylling, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Jan Wasseng, and Andreas Stohl
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-208,https://doi.org/10.5194/amt-2018-208, 2018
Revised manuscript under review for AMT
The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?
S. Eckhardt, O. Hermansen, H. Grythe, M. Fiebig, K. Stebel, M. Cassiani, A. Baecklund, and A. Stohl
Atmos. Chem. Phys., 13, 8401-8409, https://doi.org/10.5194/acp-13-8401-2013,https://doi.org/10.5194/acp-13-8401-2013, 2013
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting
Biyan Chen, Wujiao Dai, Zhizhao Liu, Lixin Wu, Cuilin Kuang, and Minsi Ao
Atmos. Meas. Tech., 11, 5153-5166, https://doi.org/10.5194/amt-11-5153-2018,https://doi.org/10.5194/amt-11-5153-2018, 2018
NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances
Corinne Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Mazière, Omaira García, Michel Grutter, César Guarin, James Hannigan, Frank Hase, Nicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, Maria Makarova, Jean-Marc Metzger, Jean-François Müller, Justus Notholt, Ivan Ortega, Mathias Palm, Clare Paton-Walsh, Anatoly Poberovskii, Markus Rettinger, John Robinson, Dan Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, and Geoffrey Toon
Atmos. Meas. Tech., 11, 5049-5073, https://doi.org/10.5194/amt-11-5049-2018,https://doi.org/10.5194/amt-11-5049-2018, 2018
A singular value decomposition framework for retrievals with vertical distribution information from greenhouse gas column absorption spectroscopy measurements
Anand K. Ramanathan, Hai M. Nguyen, Xiaoli Sun, Jianping Mao, James B. Abshire, Jonathan M. Hobbs, and Amy J. Braverman
Atmos. Meas. Tech., 11, 4909-4928, https://doi.org/10.5194/amt-11-4909-2018,https://doi.org/10.5194/amt-11-4909-2018, 2018
Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737-4756, https://doi.org/10.5194/amt-11-4737-2018,https://doi.org/10.5194/amt-11-4737-2018, 2018
Differences in ozone retrieval in MIPAS channels A and AB: a spectroscopic issue
Norbert Glatthor, Thomas von Clarmann, Gabriele P. Stiller, Michael Kiefer, Alexandra Laeng, Bianca M. Dinelli, Gerald Wetzel, and Johannes Orphal
Atmos. Meas. Tech., 11, 4707-4723, https://doi.org/10.5194/amt-11-4707-2018,https://doi.org/10.5194/amt-11-4707-2018, 2018
Cited articles
Anandan, P.: A computational framework and an algorithm for the measurement of visual motion, Int. J. Comput. Vision, 2, 283–310, https://doi.org/10.1007/BF00158167, 1989.
Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R.: A Database and Evaluation Methodology for Optical Flow, Int. J. Comput. Vision, 92, 1–31, https://doi.org/10.1007/s11263-010-0390-2, 2011.
Barron, J. L., Fleet, D. J., and Beauchemin, S. S.: Performance of optical flow techniques, Int. J. Comput. Vision, 12, 43–77, https://doi.org/10.1007/BF01420984, 1994.
Beauchemin, S. S. and Barron, J. L.: The Computation of Optical Flow, ACM Comput. Surv., 27, 433–466, https://doi.org/10.1145/212094.212141, 1995.
Bjornsson, H., Magnusson, S., Arason, P., and Petersen, G. N.: Velocities in the plume of the 2010 Eyjafjallajökull eruption, J. Geophys. Res.-Atmos., 118, 11698–11711, https://doi.org/10.1002/jgrd.50876, 2013.
Publications Copernicus
Download
Short summary
The paper focusses on gas-velocity retrievals in emission plumes using optical flow (OF) algorithms applied to remote sensing imagery. OF algorithms can measure the velocities on a pixel level between consecutive images. An issue of OF algorithms is that they often fail to detect motion in contrast-poor image areas. A correction based on histograms of an OF vector field is proposed. The new method is applied to two example volcanic data sets from Mt Etna, Italy and Guallatiri, Chile.
The paper focusses on gas-velocity retrievals in emission plumes using optical flow (OF)...
Citation
Share