Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 11, 819-833, 2018
https://doi.org/10.5194/amt-11-819-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
13 Feb 2018
Evaluation of atmospheric profiles derived from single- and zero-difference excess phase processing of BeiDou radio occultation data from the FY-3C GNOS mission
Weihua Bai et al.

Viewed

Total article views: 697 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
506 167 24 697 21 30

Views and downloads (calculated since 19 Jun 2017)

Cumulative views and downloads (calculated since 19 Jun 2017)

Viewed (geographical distribution)

Total article views: 697 (including HTML, PDF, and XML)

Thereof 684 with geography defined and 13 with unknown origin.

Country # Views %
  • 1

Cited

Saved (final revised paper)

Saved (discussion paper)

Discussed (final revised paper)

Discussed (discussion paper)

Latest update: 24 Jun 2018
Publications Copernicus
Download
Short summary
In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing. From the statistics, average bias (and standard deviation) of the bending angle and refractivity profiles were found to be as small as about 0.05–0.2 % (and 0.7–1.6 %) over the upper troposphere and lower stratosphere, including for the GEO, IGSO, and MEO subsets. Zero differencing was found to perform slightly better, as may be expected from its lower vulnerability to noise.
In this study we focus on evaluating zero-difference processing of BDS RO data vs....
Share