Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 11, 835-859, 2018
https://doi.org/10.5194/amt-11-835-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
14 Feb 2018
Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar
Robert A. Stillwell et al.

Viewed

Total article views: 895 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
645 233 17 895 15 32

Views and downloads (calculated since 19 Sep 2017)

Cumulative views and downloads (calculated since 19 Sep 2017)

Viewed (geographical distribution)

Total article views: 901 (including HTML, PDF, and XML)

Thereof 896 with geography defined and 5 with unknown origin.

Country # Views %
  • 1

Cited

Saved (final revised paper)

Saved (discussion paper)

Discussed (final revised paper)

Discussed (discussion paper)

Latest update: 19 Jun 2018
Publications Copernicus
Download
Short summary
This work focuses on making unambiguous measurements of Arctic cloud phase and assessing those measurements within the context of cloud radiative effects. It is found that effects related to lidar data recording systems can cause retrieval ambiguities that alter the interpretation of cloud phase in as much as 30 % of the available data. This misinterpretation of cloud-phase data can cause a misinterpretation of the effect of cloud phase on the surface radiation budget by as much as 10 to 30 %.
This work focuses on making unambiguous measurements of Arctic cloud phase and assessing those...
Share