Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 2 | Copyright
Atmos. Meas. Tech., 11, 861-879, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Feb 2018

Research article | 14 Feb 2018

Three-channel single-wavelength lidar depolarization calibration

Emily M. McCullough et al.
Related authors
Lidar measurements of thin laminations within Arctic clouds
Emily M. McCullough, James R. Drummond, and Thomas J. Duck
Atmos. Chem. Phys. Discuss.,,, 2018
Manuscript under review for ACP
Lidar temperature series in the middle atmosphere as a reference data set. Part A: Improved retrievals and a 20 year cross-validation of two co-located French lidars
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, Emily M. McCullough, Jean-François Mariscal, and Éric d'Almeida
Atmos. Meas. Tech. Discuss.,,, 2018
Revised manuscript has not been submitted
Lidar temperature series in the middle atmosphere as a reference data set. Part B: Assessment of temperature observations from MLS/Aura and SABER/TIMED satellites
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, and Emily M. McCullough
Atmos. Meas. Tech. Discuss.,,, 2018
Manuscript under review for AMT
Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada
Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme Nott, Christopher Perro, Colin P. Thackray, Jason Hopper, Jonathan Doyle, Thomas J. Duck, and Kaley A. Walker
Atmos. Meas. Tech., 10, 4253-4277,,, 2017
Calibration and validation of water vapour lidar measurements from Eureka, Nunavut, using radiosondes and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer
A. Moss, R. J. Sica, E. McCullough, K. Strawbridge, K. Walker, and J. Drummond
Atmos. Meas. Tech., 6, 741-749,,, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra
Christopher R. Williams, Maximilian Maahn, Joseph C. Hardin, and Gijs de Boer
Atmos. Meas. Tech., 11, 4963-4980,,, 2018
A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627-4643,,, 2018
Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals
Daniel P. Grosvenor, Odran Sourdeval, and Robert Wood
Atmos. Meas. Tech., 11, 4273-4289,,, 2018
All-sky information content analysis for novel passive microwave instruments in the range from 23.8 to 874.4 GHz
Verena Grützun, Stefan A. Buehler, Lukas Kluft, Jana Mendrok, Manfred Brath, and Patrick Eriksson
Atmos. Meas. Tech., 11, 4217-4237,,, 2018
A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity
Alexander Vasilkov, Eun-Su Yang, Sergey Marchenko, Wenhan Qin, Lok Lamsal, Joanna Joiner, Nickolay Krotkov, David Haffner, Pawan K. Bhartia, and Robert Spurr
Atmos. Meas. Tech., 11, 4093-4107,,, 2018
Cited articles
Cesana, G., Chepfer, H., Winker, D., Getzewich, B., Cai, X., Jourdan, O., Mioche, G., Okamoto, H., Hagihara, Y., Noel, V., and Reverdy, M.: Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO, J. Geophys. Res.-Atmos., 121, 5788–5808, 2016.
Freudenthaler, V.: About the effects of polarising optics on lidar signals and the Δ90 calibration, Atmos. Meas. Tech., 9, 4181–4255,, 2016.
Gimmestad, G. G.: Reexamination of depolarization in lidar measurements, Appl. Optics, 47, 3795–3802, 2008.
Hogan, R. J., Francis, P. N., Flentje, H., Illingworth, A. J., Quante, M., and Pelon, J.: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE'98, Q. J. Roy. Meteor. Soc., 129, 2089–2116,, 2003.
Korolev, A. V., Isaac, G. A., Strapp, J. W., Cober, S. G., and Barker, H. W.: In situ measurements of liquid water content profiles in midlatitude stratiform clouds, Q. J. Roy. Meteor. Soc., 133, 1693–1699,, 2007.
Publications Copernicus
Short summary
Measuring the phase (liquid and ice) of Arctic clouds is essential for understanding the changing global climate. Using a lidar, two polarized signals are usually needed. At CRL lidar, one of these signals is small, so phase measurements have low resolution. Another method can use a large unpolarized signal in place of the small polarized signal. We show how to use the original low-resolution measurement to calibrate the new high-resolution method. At CRL, this gives 20 times higher resolution.
Measuring the phase (liquid and ice) of Arctic clouds is essential for understanding the...