Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 2 | Copyright
Atmos. Meas. Tech., 11, 939-948, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Feb 2018

Research article | 16 Feb 2018

Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations

Klaus Gierens1, Kostas Eleftheratos2, and Robert Sausen1 Klaus Gierens et al.
  • 1Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
  • 2Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece

Abstract. High-resolution Infrared Radiation Sounder (HIRS) brightness temperatures at channel 12 (T12) can be used to assess the water vapour content of the upper troposphere. The transition from HIRS/2 to HIRS/3 in 1999 involved a shift in the central wavelength of channel 12 from 6.7 to 6.5µm, causing a discontinuity in the time series of T12. To understand the impact of this change in the measured brightness temperatures, we have performed radiative transfer calculations for channel 12 of HIRS/2 and HIRS/3 instruments, using a large set of radiosonde profiles of temperature and relative humidity from three different sites. Other possible changes within the instrument, apart from the changed spectral response function, have been assumed to be of minor importance, and in fact, it was necessary to assume as a working hypothesis that the spectral and radiometric calibration of the two instruments did not change during the relatively short period of their common operation. For each radiosonde profile we performed two radiative transfer calculations, one using the HIRS/2 channel response function of NOAA 14 and one using the HIRS/3 channel response function of NOAA 15, resulting in negative differences of T12 (denoted as ΔT12 := T12∕15 − T12∕14) ranging between −12 and −2K. Inspection of individual profiles for large, medium and small values of ΔT12 pointed to the role of the mid-tropospheric humidity. This guided us to investigate the relation between ΔT12 and the channel 11 brightness temperatures which are typically used to detect signals from the mid-troposphere. This allowed us to construct a correction for the HIRS/3 T12, which leads to a pseudo-channel 12 brightness temperature as if a HIRS/2 instrument had measured it. By applying this correction we find an excellent agreement between the original HIRS/2 T12 and the HIRS/3 data inferred from the correction method with R = 0.986. Upper-tropospheric humidity (UTH) derived from the pseudo HIRS/2 T12 data compared well with that calculated from intersatellite-calibrated data, providing independent justification for using the two intercalibrated time series (HIRS/2 and HIRS/3) as a continuous HIRS time series for long-term UTH analyses.

Publications Copernicus
Short summary
HIRS channel 12 on the series of NOAA weathersatellites is sensitive to humidity in the upper troposphere. A change in its central wavelength between NOAA 14 and 15 made it necessary to perform an intercalibration to retain a homogeneous time series. Here we show that the intercalibration of Shi and Bates (2011), which is based on statistical methods, can be underpinned by physical arguments using results of radiative transfer calculations.
HIRS channel 12 on the series of NOAA weathersatellites is sensitive to humidity in the upper...