Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 11, 949-969, 2018
https://doi.org/10.5194/amt-11-949-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
16 Feb 2018
Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie–Raman lidar observations
Igor Veselovskii et al.

Viewed

Total article views: 776 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
501 258 17 776 13 25

Views and downloads (calculated since 05 Oct 2017)

Cumulative views and downloads (calculated since 05 Oct 2017)

Viewed (geographical distribution)

Total article views: 773 (including HTML, PDF, and XML)

Thereof 758 with geography defined and 15 with unknown origin.

Country # Views %
  • 1

Cited

Saved (final revised paper)

Saved (discussion paper)

Discussed (final revised paper)

Discussed (discussion paper)

Latest update: 20 Jun 2018
Publications Copernicus
Download
Short summary
Observations of multiwavelength Mie–Raman lidar during smoke episode over West Africa are compared with the vertical distribution of aerosol parameters provided by the MERRA-2 model. The values of modeled and observed extinctions at both 355 nm and 532 nm are also rather close. The model predicts significant concentration of dust particles inside the smoke layer. This is supported by a high depolarization ratio of 15 % observed in the center of this layer.
Observations of multiwavelength Mie–Raman lidar during smoke episode over West Africa are...
Share