Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 11, issue 2 | Copyright
Atmos. Meas. Tech., 11, 971-995, 2018
https://doi.org/10.5194/amt-11-971-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Feb 2018

Research article | 19 Feb 2018

Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

Fredrick W. Irion et al.
Related authors
Retrievals of Tropospheric Ozone Profiles from the Synergic Observation of AIRS and OMI: Methodology and Validation
Dejian Fu, Susan S. Kulawik, Kazuyuki Miyazaki, Kevin W. Bowman, John R. Worden, Annmarie Eldering, Nathaniel J. Livesey, Joao Teixeira, Fredrick W. Irion, Robert L. Herman, Gregory B. Osterman, Xiong Liu, Pieternel F. Levelt, Anne M. Thompson, and Ming Luo
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-138,https://doi.org/10.5194/amt-2018-138, 2018
Revised manuscript accepted for AMT
Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach
Jesse Dorrestijn, Brian H. Kahn, João Teixeira, and Fredrick W. Irion
Atmos. Meas. Tech., 11, 2717-2733, https://doi.org/10.5194/amt-11-2717-2018,https://doi.org/10.5194/amt-11-2717-2018, 2018
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting
Biyan Chen, Wujiao Dai, Zhizhao Liu, Lixin Wu, Cuilin Kuang, and Minsi Ao
Atmos. Meas. Tech., 11, 5153-5166, https://doi.org/10.5194/amt-11-5153-2018,https://doi.org/10.5194/amt-11-5153-2018, 2018
NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances
Corinne Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Mazière, Omaira García, Michel Grutter, César Guarin, James Hannigan, Frank Hase, Nicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, Maria Makarova, Jean-Marc Metzger, Jean-François Müller, Justus Notholt, Ivan Ortega, Mathias Palm, Clare Paton-Walsh, Anatoly Poberovskii, Markus Rettinger, John Robinson, Dan Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, and Geoffrey Toon
Atmos. Meas. Tech., 11, 5049-5073, https://doi.org/10.5194/amt-11-5049-2018,https://doi.org/10.5194/amt-11-5049-2018, 2018
A singular value decomposition framework for retrievals with vertical distribution information from greenhouse gas column absorption spectroscopy measurements
Anand K. Ramanathan, Hai M. Nguyen, Xiaoli Sun, Jianping Mao, James B. Abshire, Jonathan M. Hobbs, and Amy J. Braverman
Atmos. Meas. Tech., 11, 4909-4928, https://doi.org/10.5194/amt-11-4909-2018,https://doi.org/10.5194/amt-11-4909-2018, 2018
Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737-4756, https://doi.org/10.5194/amt-11-4737-2018,https://doi.org/10.5194/amt-11-4737-2018, 2018
Differences in ozone retrieval in MIPAS channels A and AB: a spectroscopic issue
Norbert Glatthor, Thomas von Clarmann, Gabriele P. Stiller, Michael Kiefer, Alexandra Laeng, Bianca M. Dinelli, Gerald Wetzel, and Johannes Orphal
Atmos. Meas. Tech., 11, 4707-4723, https://doi.org/10.5194/amt-11-4707-2018,https://doi.org/10.5194/amt-11-4707-2018, 2018
Cited articles
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, 2003.
Baum, B. A., Yang, P., Nasiri, S., Heidinger, A. K., Heymsfield, A., and Li, J.: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1, J. Appl. Meteorol. Clim., 46, 423–434, 2007.
Blackwell, W. J.: A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data, IEEE T. Geosci. Remote, 43, 2535–2546, 2005.
Blumstein, D., Chalon, G., Carlier, T., Buil, C., Heìbert, P., Maciaszek, T., Ponce, G., Phulpin, T., Tournier, B., Simeìoni, D., Astruc, P., Clauss, A., Kayal, G., and Jegou, R.: IASI instrument: Technical overview and measured performances, in: Infrared Spaceborne Remote Sensing XII, edited by: Strojnik, M, Proc. SPIE, 5543, SPIE, Bellingham, WA, 2004.
Publications Copernicus
Download
Short summary
We describe a new algorithm for the Atmospheric Infrared Sounder (AIRS) that uses its thermal infrared spectra directly rather than using “cloud-clearing.” By additionally modelling clouds within an AIRS field-of-view, we retrieve temperature and water vapor profiles on the AIRS ~13.5 km horizontal footprint (at nadir) rather than the ~45 km footprint of cloud-cleared spectra. Initial validation is presented, and avenues for future development are discussed.
We describe a new algorithm for the Atmospheric Infrared Sounder (AIRS) that uses its thermal...
Citation
Share