Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 2
Atmos. Meas. Tech., 12, 1183–1206, 2019
https://doi.org/10.5194/amt-12-1183-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 1183–1206, 2019
https://doi.org/10.5194/amt-12-1183-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Feb 2019

Research article | 25 Feb 2019

Remote sensing of cloud droplet radius profiles using solar reflectance from cloud sides – Part 1: Retrieval development and characterization

Florian Ewald et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Florian Ewald on behalf of the Authors (31 Dec 2018)  Author's response    Manuscript
ED: Publish as is (07 Jan 2019) by Alexander Kokhanovsky
Publications Copernicus
Download
Short summary
This paper presents a new method for gaining insights into the vertical evolution of cloud droplet effective radii by using reflected solar radiation from cloud sides. The paper investigates how bi-spectral effective radius retrievals are affected by unknown cloud surface orientations and presents a method to mitigate this effect. Based on these findings, this study develops a statistical effective radius retrieval for airborne, side-looking imaging sensors.
This paper presents a new method for gaining insights into the vertical evolution of cloud...
Citation