Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1697–1716, 2019
https://doi.org/10.5194/amt-12-1697-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 1697–1716, 2019
https://doi.org/10.5194/amt-12-1697-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Mar 2019

Research article | 18 Mar 2019

Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach

Antonio Di Noia et al.

Related authors

Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020,https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm
Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare
Atmos. Meas. Tech., 13, 553–573, https://doi.org/10.5194/amt-13-553-2020,https://doi.org/10.5194/amt-13-553-2020, 2020
Short summary
Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter
Antonio Di Noia, Otto P. Hasekamp, Lianghai Wu, Bastiaan van Diedenhoven, Brian Cairns, and John E. Yorks
Atmos. Meas. Tech., 10, 4235–4252, https://doi.org/10.5194/amt-10-4235-2017,https://doi.org/10.5194/amt-10-4235-2017, 2017
Short summary
Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations
A. Di Noia, O. P. Hasekamp, G. van Harten, J. H. H. Rietjens, J. M. Smit, F. Snik, J. S. Henzing, J. de Boer, C. U. Keller, and H. Volten
Atmos. Meas. Tech., 8, 281–299, https://doi.org/10.5194/amt-8-281-2015,https://doi.org/10.5194/amt-8-281-2015, 2015
Short summary
Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument
G. van Harten, J. de Boer, J. H. H. Rietjens, A. Di Noia, F. Snik, H. Volten, J. M. Smit, O. P. Hasekamp, J. S. Henzing, and C. U. Keller
Atmos. Meas. Tech., 7, 4341–4351, https://doi.org/10.5194/amt-7-4341-2014,https://doi.org/10.5194/amt-7-4341-2014, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Towards an operational Ice Cloud Imager (ICI) retrieval product
Patrick Eriksson, Bengt Rydberg, Vinia Mattioli, Anke Thoss, Christophe Accadia, Ulf Klein, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 53–71, https://doi.org/10.5194/amt-13-53-2020,https://doi.org/10.5194/amt-13-53-2020, 2020
Short summary
Ice crystal number concentration from lidar, cloud radar and radar wind profiler measurements
Johannes Bühl, Patric Seifert, Martin Radenz, Holger Baars, and Albert Ansmann
Atmos. Meas. Tech., 12, 6601–6617, https://doi.org/10.5194/amt-12-6601-2019,https://doi.org/10.5194/amt-12-6601-2019, 2019
Short summary
Retrieval of cloud properties from spectral zenith radiances observed by sky radiometers
Pradeep Khatri, Hironobu Iwabuchi, Tadahiro Hayasaka, Hitoshi Irie, Tamio Takamura, Akihiro Yamazaki, Alessandro Damiani, Husi Letu, and Qin Kai
Atmos. Meas. Tech., 12, 6037–6047, https://doi.org/10.5194/amt-12-6037-2019,https://doi.org/10.5194/amt-12-6037-2019, 2019
Short summary
A new approach to estimate supersaturation fluctuations in stratocumulus cloud using ground-based remote-sensing measurements
Fan Yang, Robert McGraw, Edward P. Luke, Damao Zhang, Pavlos Kollias, and Andrew M. Vogelmann
Atmos. Meas. Tech., 12, 5817–5828, https://doi.org/10.5194/amt-12-5817-2019,https://doi.org/10.5194/amt-12-5817-2019, 2019
Short summary
Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne
Christine Aebi, Julian Gröbner, Stelios Kazadzis, Laurent Vuilleumier, Antonis Gkikas, and Niklaus Kämpfer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-347,https://doi.org/10.5194/amt-2019-347, 2019
Revised manuscript accepted for AMT
Short summary

Cited articles

Aires, F., Marquisseau, F., Prigent, C., and Sèze, G.: A land and ocean microwave cloud classification algorithm derived from AMSU-A and -B, trained using MSG-SEVIRI infrared and visible observations, Mon. Weather Rev., 139, 2347–2366, https://doi.org/10.1175/MWR-D-10-05012.1, 2011. a
Alexandrov, M. D., Cairns, B., Emde, C., Ackerman, A. S., and van Diedenhoven, B.: Accuracy assessments of cloud droplet size retrievals from polarized radiance measurements by the research scanning polarimeter, Remote Sens. Environ., 125, 92–111, https://doi.org/10.1016/j.rse.2012.07.012, 2012a. a
Alexandrov, M. D., Cairns, B., and Mishchenko, M. I.: Rainbow Fourier transform, J. Quant. Spectrosc. Ra., 113, 2521–2535, https://doi.org/10.1016/j.jqsrt.2012.03.025, 2012b. a
Arduini, R. F., Minnis, P., Smith Jr., W. L., Ayers, J. K., Khaiyer, M. M., and Heck, P.: Sensitivity of satellite-retrieved cloud properties to the effective variance of cloud droplet size distribution, in: Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, FL, USA, 14–18 March 2005, 2005. a
Baum, B. A., Soulen, P. F., Strabala, K. I., King, M. D., Ackerman, A. S., Menzel, W. P., and Yang, P.: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase, J. Geophys. Res., 105, 11781–11792, https://doi.org/10.1029/1999JD901089, 2000. a
Publications Copernicus
Download
Short summary
We present a neural network algorithm for the retrieval of cloud physical properties from multi-angle polarimetric measurements. We have trained the algorithm on a large dataset of synthetic measurements and applied it to a year of POLDER-3 data. A comparison against MODIS cloud products reveals that our algorithm is capable of performing cloud property retrievals on a global scale and possibly improves the estimates of cloud effective radius over land with respect to existing POLDER-3 products.
We present a neural network algorithm for the retrieval of cloud physical properties from...
Citation